Inequalities for polynomials on the unit interval
HTML articles powered by AMS MathViewer
- by Q. I. Rahman and G. Schmeisser
- Trans. Amer. Math. Soc. 231 (1977), 93-100
- DOI: https://doi.org/10.1090/S0002-9947-1977-0463406-2
- PDF | Request permission
Abstract:
Let ${p_n}(z) = \sum \nolimits _{k = 0}^n {{a_k}{z^k}}$ be a polynomial of degree at most n with real coefficients. Generalizing certain results of I. Schur related to the well-known inequalities of Chebyshev and Markov we prove that if ${p_n}(z)$ has at most $n - 1$ distinct zeros in $( - 1,1)$, then \[ \begin {array}{*{20}{c}} {|{a_n}| \leqslant {2^{n - 1}}{{\left ( {\cos \frac {\pi }{{4n}}} \right )}^{2n}}\max \limits _{ - 1 \leqslant x \leqslant 1} |{p_n}(x)|,} \\ {\max \limits _{ - 1 \leqslant x \leqslant 1} |{{p’}_n}(x)| \leqslant {{\left ( {n\cos \frac {\pi }{{4n}}} \right )}^2}\max \limits _{ - 1 \leqslant x \leqslant 1} |{p_n}(x)|.} \\ \end {array} \]References
- P. Erdös, On extremal properties of the derivatives of polynomials, Ann. of Math. (2) 41 (1940), 310–313. MR 1945, DOI 10.2307/1969005 János Eröd, On the lower bound of the maximum of certain polynomials, Mat. Fiz. Lapok. 46 (1939), 58-83. (Hungarian with German summary)
- A. Giroux and Q. I. Rahman, Inequalities for polynomials with a prescribed zero, Trans. Amer. Math. Soc. 193 (1974), 67–98. MR 352427, DOI 10.1090/S0002-9947-1974-0352427-3 A. Markov, On a problem of D. I. Mendeleev, Zap. Imp. Akad. Nauk 62 (1889), 1-24. (Russian)
- Q. I. Rahman, Extremal properties of the successive derivatives of polynomials and rational functions, Math. Scand. 15 (1964), 121–130. MR 196044, DOI 10.7146/math.scand.a-10735
- John T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approximation Theory 6 (1972), 354–358. MR 342909, DOI 10.1016/0021-9045(72)90041-x
- I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z. 4 (1919), no. 3-4, 271–287 (German). MR 1544364, DOI 10.1007/BF01203015
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 231 (1977), 93-100
- MSC: Primary 30A06
- DOI: https://doi.org/10.1090/S0002-9947-1977-0463406-2
- MathSciNet review: 0463406