A class of infinitely connected domains and the corona
HTML articles powered by AMS MathViewer
- by W. M. Deeb
- Trans. Amer. Math. Soc. 231 (1977), 101-106
- DOI: https://doi.org/10.1090/S0002-9947-1977-0477784-1
- PDF | Request permission
Abstract:
Let D be a bounded domain in the complex plane. Let ${H^\infty }(D)$ be the Banach algebra of bounded analytic functions on D. The corona problem asks whether D is $\text {weak}^\ast$ dense in the space $\mathfrak {M}(D)$ of maximal ideals of ${H^\infty }(D)$. Carleson [3] proved that the open unit disc ${\Delta _0}$ is dense in $\mathfrak {M}({\Delta _0})$. Stout [9] extended Carleson’s result to finitely connected domains. Behrens [2] found a class of infinitely connected domains for which the corona problem has an affirmative answer. In this paper we will use Behrens’ idea to extend the results to more general domains. See [11] for further extensions and applications of these techniques.References
- M. Behrens, The corona conjecture for a class of infinitely connected domains, Bull. Amer. Math. Soc. 76 (1970), 387–391. MR 256166, DOI 10.1090/S0002-9904-1970-12487-9
- Michael Frederick Behrens, The maximal ideal space of algebras of bounded analytic functions on infinitely connected domains, Trans. Amer. Math. Soc. 161 (1971), 359–379. MR 435420, DOI 10.1090/S0002-9947-1971-0435420-9
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- T. W. Gamelin, Localization of the corona problem, Pacific J. Math. 34 (1970), 73–81. MR 276742
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387 —, Lectures on ${H^\infty }(D)$, La Plata Notas de Math. No. 21 (1972).
- T. W. Gamelin and John Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. 92 (1970), 455–474. MR 303296, DOI 10.2307/2373334
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- E. L. Stout, Two theorems concerning functions holomorphic on multiply connected domains, Bull. Amer. Math. Soc. 69 (1963), 527–530. MR 150274, DOI 10.1090/S0002-9904-1963-10981-7
- Lawrence Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241–269. MR 252665, DOI 10.1090/S0002-9947-1969-0252665-2
- W. M. Deeb and D. R. Wilken, $D$-domains and the corona, Trans. Amer. Math. Soc. 231 (1977), no. 1, 107–115. MR 477785, DOI 10.1090/S0002-9947-1977-0477785-3
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 231 (1977), 101-106
- MSC: Primary 46J15
- DOI: https://doi.org/10.1090/S0002-9947-1977-0477784-1
- MathSciNet review: 0477784