On the transformation group of a real hypersurface
HTML articles powered by AMS MathViewer
- by S. M. Webster
- Trans. Amer. Math. Soc. 231 (1977), 179-190
- DOI: https://doi.org/10.1090/S0002-9947-1977-0481085-5
- PDF | Request permission
Abstract:
The group of biholomorphic transformations leaving fixed a strongly pseudoconvex real hypersurface in a complex manifold is a Lie group. In this paper it is shown that the Chern-Moser invariants must vanish if this group is noncompact and the hypersurface is compact. Also considered are transformation groups of flat hypersurfaces and intransitive groups.References
- Elie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), no. 1, 17–90 (French). MR 1553196, DOI 10.1007/BF02417822 b. —, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. II, Ann. Scuola Norm. Sup. Pisa (2) 1 (1932), 333-354.
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- Shoshichi Kobayashi, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70, Springer-Verlag, New York-Heidelberg, 1972. MR 0355886
- N. H. Kuiper, On conformally-flat spaces in the large, Ann. of Math. (2) 50 (1949), 916–924. MR 31310, DOI 10.2307/1969587
- Deane Montgomery and Leo Zippin, Existence of subgroups isomorphic to the real numbers, Ann. of Math. (2) 53 (1951), 298–326. MR 47668, DOI 10.2307/1969544
- Morio Obata, Conformal transformations of Riemannian manifolds, J. Differential Geometry 4 (1970), 311–333. MR 267485
- Morio Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247–258. MR 303464
- S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geometry 13 (1978), no. 1, 25–41. MR 520599
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 231 (1977), 179-190
- MSC: Primary 32C05; Secondary 57E10
- DOI: https://doi.org/10.1090/S0002-9947-1977-0481085-5
- MathSciNet review: 0481085