Functional calculus and positive-definite functions
HTML articles powered by AMS MathViewer
- by Colin C. Graham
- Trans. Amer. Math. Soc. 231 (1977), 215-231
- DOI: https://doi.org/10.1090/S0002-9947-1977-0487285-2
- PDF | Request permission
Abstract:
For a LCA group G with dual group Ĝ, let $D(G) = D(\hat G)$ denote the convex (not closed) hull of $\{ \langle x,\gamma \rangle :x \in G,\gamma \in \hat G\}$. The set $D(G)$ is the natural domain for functions that operate by composition from the class, $P{D_1}(\hat G)$, of Fourier-Stieltjes transforms of probability measures on G to $B(\hat G)$, the class of all Fourier-Stieltjes transforms on Ĝ. Little is known about the behavior of F on the boundary of $D(G)$. In §1, we show (1) if F operators from $P{D_1}(G)$ to $B(G)$ and G is compact, then $K(z) = {\lim _{t \to {1^ - }}}F(tz)$ exists for all $z \in D(G)$ and K operates from $P{D_1}(\hat G)$ to $B(\hat G)$; (2) if F operates from $P{D_1}(\hat G)$ to $PD(\hat G) = { \cup _{r > 0}}rP{D_1}(\hat G)$ and G is compact, then K operates from $P{D_1}(\hat G)$ to $PD(\hat G)$, and so also does $F - K$; (3) if $G = {{\mathbf {D}}_q},q \geqslant 2$, and F operates from $P{D_1}(\hat G)$ to $B(\hat G)$, then $F = K$ on $D(G) \cap \{ z:|z| < 1\}$. This third result is shown to be sharp for compact groups of bounded order. In §2, an example is given that fills a gap in the theory of functions operating from $P{D_1}(\hat G)$ to $B(\hat G)$. In §3 we show that most Riesz products and all continuous measures on K-sets have a property that is very useful in proving symbolic calculus theorems. Applications of this are indicated. Some open questions are given in §4.References
- W. J. Bailey, G. Brown, and W. Moran, Spectra of independent power measures, Proc. Cambridge Philos. Soc. 72 (1972), 27–35. MR 296608, DOI 10.1017/s0305004100050921
- Ron C. Blei, On trigonometric series associated with separable, translation invariant subspaces of $L^{\infty }(G)$, Trans. Amer. Math. Soc. 173 (1972), 491–499. MR 313715, DOI 10.1090/S0002-9947-1972-0313715-8
- Gavin Brown, Riesz products and generalized characters, Proc. London Math. Soc. (3) 30 (1975), 209–238. MR 372530, DOI 10.1112/plms/s3-30.2.209
- Gavin Brown and William Moran, On orthogonality of Riesz products, Proc. Cambridge Philos. Soc. 76 (1974), 173–181. MR 350319, DOI 10.1017/s0305004100048830
- Gavin Brown and William Moran, Coin tossing and powers of singular measures, Math. Proc. Cambridge Philos. Soc. 77 (1975), 349–364. MR 358906, DOI 10.1017/S0305004100051173
- Raouf Doss, Approximations and representations for Fourier transforms, Trans. Amer. Math. Soc. 153 (1971), 211–221. MR 268597, DOI 10.1090/S0002-9947-1971-0268597-9
- Stephen William Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A162–A163 (French). MR 271647
- Colin C. Graham, Symbolic calculus for positive-definite functions, J. Functional Analysis 11 (1972), 465–478. MR 0404996, DOI 10.1016/0022-1236(72)90067-5
- Colin C. Graham, The functions which operate on Fourier-Stieltjes transforms of $L$-subalgebras of $M({\bf {\rm }T})$, J. Functional Analysis 11 (1972), 453–464. MR 0404995, DOI 10.1016/0022-1236(72)90066-3
- Colin C. Graham, A Riesz product proof of the Wiener-Pitt theorem, Proc. Amer. Math. Soc. 44 (1974), 312–314. MR 340972, DOI 10.1090/S0002-9939-1974-0340972-1
- Colin C. Graham, $M_{0}\,(G)$ is not a prime $L$-ideal of measures, Proc. Amer. Math. Soc. 27 (1971), 557–562. MR 278007, DOI 10.1090/S0002-9939-1971-0278007-9
- Carl S. Herz, Fonctions opérant sur les fonctions définies-positives, Ann. Inst. Fourier (Grenoble) 13 (1963), 161–180 (French). MR 152832
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Edwin Hewitt and Herbert S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc. 62 (1966), 399–420. MR 193435, DOI 10.1017/s0305004100039992
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- R. Kaufman, On the symbolic calculus of Bernoulli convolutions, Israel J. Math. 6 (1968), 30–35. MR 234217, DOI 10.1007/BF02771602
- Robert Kaufman, An example in the calculus of Fourier transforms, Bull. Amer. Math. Soc. 73 (1967), 357–359. MR 212502, DOI 10.1090/S0002-9904-1967-11750-6
- A. G. Kuroš, Teoriya grupp, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953 (Russian). 2d ed. MR 0059266 D. K. Mason, The functions which operate on Fourier-Stieltjes transforms of certain subvector spaces of $M(T)$, Thesis, Northwestern Univ., Evanston, Ill., 1972. —, The functions which operate on Fourier-Stieltjes transforms of certain subvector spaces of $M(T)$, Notices Amer. Math. Soc. 20 (1973), A-389. Abstract #704-B13.
- William Moran, The individual symbolic calculus for measures, Proc. London Math. Soc. (3) 31 (1975), no. 4, 385–417. MR 387952, DOI 10.1112/plms/s3-31.4.385
- Jacques Peyrière, Sur les produits de Riesz, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1417–A1419 (French). MR 316964
- Daniel Rider, Functions which operate on positive definite functions, Proc. Cambridge Philos. Soc. 69 (1971), 87–97. MR 412737, DOI 10.1017/s0305004100046454
- Daniel Rider, Functions which operate on ${\cal F}L_{p}(T),\,1<p<2$, Pacific J. Math. 40 (1972), 681–693. MR 306804
- Daniel Rider, Functions which operate in the Fourier algebra of a compact group, Proc. Amer. Math. Soc. 28 (1971), 525–530. MR 276792, DOI 10.1090/S0002-9939-1971-0276792-3
- Daniel Rider, Gap series on groups and spheres, Canadian J. Math. 18 (1966), 389–398. MR 190635, DOI 10.4153/CJM-1966-041-0
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Walter Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227. MR 0116177, DOI 10.1512/iumj.1960.9.59013
- Sadahiro Saeki, Operating functions on $B_{0}(\hat G)$ in plane regions, Tohoku Math. J. (2) 21 (1969), 112–116. MR 247379, DOI 10.2748/tmj/1178243039
- R. Salem and A. Zygmund, On a theorem of Banach, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 293–295. MR 21611, DOI 10.1073/pnas.33.10.293
- D. L. Salinger and N. Th. Varopoulos, Convolutions of measures and sets of analyticity, Math. Scand. 25 (1969), 5–18. MR 264334, DOI 10.7146/math.scand.a-10935 Yu. A. Šreĭder, The structure of maximal ideals in rings of measures with convolution, Mat. Sb. (N.S.) 27 (69) (1950), 297-318; English transl., Amer. Math. Soc. Transl. 81 (1953). MR 12, 240; 14, 768.
- Joseph L. Taylor, Measure algebras, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 16, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1973. Expository lectures from the CBMS Regional Conference held at the University of Montana, Missoula, Mont., June 1972. MR 0427949
- Joseph L. Taylor, On the spectrum of a measure, Advances in Math. 12 (1974), 451–463. MR 358222, DOI 10.1016/S0001-8708(74)80012-5
- Nicholas Th. Varopoulos, The functions that operate on $B_{0}\,(\Gamma )$ of a discrete group $\Gamma$, Bull. Soc. Math. France 93 (1965), 301–321. MR 200677 —, Measure algebras of a locally compact abelian group, Séminaire Bourbaki, Vol. 1964/1965, Exposé No. 282, Benjamin, New York and Amsterdam, 1966. MR 33 #54201.
- N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51–112. MR 240564, DOI 10.1007/BF02392079
- N. Th. Varopoulos, Tensor algebras over discrete spaces, J. Functional Analysis 3 (1969), 321–335. MR 0250087, DOI 10.1016/0022-1236(69)90046-9
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 231 (1977), 215-231
- MSC: Primary 43A25
- DOI: https://doi.org/10.1090/S0002-9947-1977-0487285-2
- MathSciNet review: 0487285