Nonzero-sum stochastic differential games with stopping times and free boundary problems
HTML articles powered by AMS MathViewer
- by Alain Bensoussan and Avner Friedman
- Trans. Amer. Math. Soc. 231 (1977), 275-327
- DOI: https://doi.org/10.1090/S0002-9947-1977-0453082-7
- PDF | Request permission
Abstract:
One is given a diffusion process and two payoffs which depend on the process and on two stopping times ${\tau _1},{\tau _2}$. Two players are to choose their respective stopping times ${\tau _1},{\tau _2}$ so as to achieve a Nash equilibrium point. The problem whether such times exist is reduced to finding a “regular” solution $({u_1},{u_2})$ of a quasi-variational inequality. Existence of a solution is established in the stationary case and, for one space dimension, in the nonstationary case; for the latter situation, the solution is shown to be regular if the game is of zero sum.References
- Alain Bensoussan and Avner Friedman, Nonlinear variational inequalities and differential games with stopping times, J. Functional Analysis 16 (1974), 305–352. MR 0354049, DOI 10.1016/0022-1236(74)90076-7
- Alain Bensoussan, Maurice Goursat, and Jacques-Louis Lions, Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1279–A1284 (French). MR 317143
- A. Bensoussan and J.-L. Lions, Problèmes de temps d’arrêt optimal et inéquations variationnelles paraboliques, Applicable Anal. 3 (1973), 267–294 (French). MR 449843, DOI 10.1080/00036817308839070
- A. Bensoussan and J.-L. Lions, Nouvelles méthodes en contrôle impulsionnel, Appl. Math. Optim. 1 (1974/75), no. 4, 289–312 (French, with English summary). MR 390886, DOI 10.1007/BF01447955 —, Nouvelles formulations de problèmes de contrôle impulsionnel et applications, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1189-A1192. MR 47 #5690. —, Contrôle impulsionnel et inéquations quasi-variationnelles d’evolution, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1333-A1338. MR 47 #5692.
- Alain Bensoussan and Jacques-Louis Lions, Contrôle impulsionnel et systèmes d’inéquations quasi variationnelles, C. R. Acad. Sci. Paris Sér. A 278 (1974), 747–751 (French). MR 341246 —, Inéquations quasi-variationnelles décroisantes, Congrès d’Analyse Convexe (St. Pierre de Chartieuse, 1974), Lecture Notes in Math., Springer-Verlag,Berlin and New York (to appear).
- Haïm Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1–168. MR 428137
- Haïm Brézis and Avner Friedman, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math. 20 (1976), no. 1, 82–97. MR 390501
- Georges Duvaut, Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré), C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1461–A1463 (French). MR 328346
- Avner Friedman, Free boundary problems for parabolic equations. I. Melting of solids. , J. Math. Mech. 8 (1959), 499–517. MR 0144078, DOI 10.1512/iumj.1959.8.58036
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Avner Friedman, Stochastic games and variational inequalities, Arch. Rational Mech. Anal. 51 (1973), 321–346. MR 351571, DOI 10.1007/BF00263039
- Avner Friedman, Regularity theorems for variational inequalities in unbounded domains and applications to stopping time problems, Arch. Rational Mech. Anal. 52 (1973), 134–160. MR 353110, DOI 10.1007/BF00282324
- Avner Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis 18 (1975), 151–176. MR 0477461, DOI 10.1016/0022-1236(75)90022-1
- Avner Friedman, The shape and smoothness of the free boundary for some elliptic variational inequalities, Indiana Univ. Math. J. 25 (1976), no. 2, 103–118. MR 393806, DOI 10.1512/iumj.1976.25.25009
- Avner Friedman, A problem in hydraulics with non-monotone free boundary, Indiana Univ. Math. J. 25 (1976), no. 6, 577–592. MR 425358, DOI 10.1512/iumj.1976.25.25046
- Avner Friedman and David Kinderlehrer, A one phase Stefan problem, Indiana Univ. Math. J. 24 (1974/75), no. 11, 1005–1035. MR 385326, DOI 10.1512/iumj.1975.24.24086
- Avner Friedman and David Kinderlehrer, A class of parabolic quasi-variational inequalities, J. Differential Equations 21 (1976), no. 2, 395–416. MR 415069, DOI 10.1016/0022-0396(76)90128-5
- J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519. MR 216344, DOI 10.1002/cpa.3160200302
- V. A. Solonnikov, A priori estimates for solutions of second-order equations of parabolic type, Trudy Mat. Inst. Steklov. 70 (1964), 133–212 (Russian). MR 0162065
- Luc Tartar, Inéquations quasi variationnelles abstraites, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1193–1196 (French). MR 344964
- Pierre van Moerbeke, An optimal stopping problem with linear reward, Acta Math. 132 (1974), 111–151. MR 376225, DOI 10.1007/BF02392110
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 231 (1977), 275-327
- MSC: Primary 93E05; Secondary 60G40, 60G10
- DOI: https://doi.org/10.1090/S0002-9947-1977-0453082-7
- MathSciNet review: 0453082