Boundary behavior of harmonic forms on a rank one symmetric space
HTML articles powered by AMS MathViewer
- by Aroldo Kaplan and Robert Putz
- Trans. Amer. Math. Soc. 231 (1977), 369-384
- DOI: https://doi.org/10.1090/S0002-9947-1977-0477174-1
- PDF | Request permission
Abstract:
We study the boundary behavior of 1-forms on a rank-one symmetric space M satisfying the equations $d\omega = 0 = \delta \omega$; the role of boundary is played by a nilpotent (Iwasawa) group $\bar N$ of isometries of M. For forms satisfying certain ${H^p}$ integrability conditions, we obtain the existence of boundary values in an appropriate sense, characterize these boundary values by means of fractional and singular integral operators on the group $\bar N$, and exhibit explicit isomorphisms between ${H^p}$ spaces of forms on M and the ordinary ${L^p}$ spaces of functions on the group $\bar N$.References
- Ronald R. Coifman and Guido Weiss, Invariant systems of conjugate harmonic functions associated with compact Lie groups, Studia Math. 44 (1972), 301–308. MR 340986, DOI 10.4064/sm-44-4-301-308
- G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373–376. MR 315267, DOI 10.1090/S0002-9904-1973-13171-4
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Adam Korányi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. Amer. Math. Soc. 140 (1969), 393–409. MR 245826, DOI 10.1090/S0002-9947-1969-0245826-X
- A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 575–648 (1972). MR 463513
- Adam Korányi and Stephen Vági, Cauchy-Szegö integrals for systems of harmonic functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 181–196. MR 390259
- E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440–445. MR 315302, DOI 10.1090/S0002-9904-1973-13205-7
- Elias M. Stein and Guido Weiss, On the theory of harmonic functions of several variables. I. The theory of $H^{p}$-spaces, Acta Math. 103 (1960), 25–62. MR 121579, DOI 10.1007/BF02546524
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 231 (1977), 369-384
- MSC: Primary 32M15; Secondary 22E30, 43A85
- DOI: https://doi.org/10.1090/S0002-9947-1977-0477174-1
- MathSciNet review: 0477174