A note on limits of unitarily equivalent operators
HTML articles powered by AMS MathViewer
- by Lawrence A. Fialkow
- Trans. Amer. Math. Soc. 232 (1977), 205-220
- DOI: https://doi.org/10.1090/S0002-9947-1977-0448131-6
- PDF | Request permission
Abstract:
Let $\mathcal {U}(\mathcal {H})$ denote the set of all unitary operators on a separable complex Hilbert space $\mathcal {H}$. If T is a bounded linear operator on $\mathcal {H}$, let ${\pi _T}$ denote the mapping of $\mathcal {U}(\mathcal {H})$ onto $\mathcal {U}(T)$ given by conjugation. It is proved that if T is normal or isometric, then there exists a locally defined continuous cross-section for ${\pi _T}$ if and only if the spectrum of T is finite. Examples of nonnormal operators with local cross-sections are given.References
- H. O. Cordes, On a class of $C^{\ast }$-algebras, Math. Ann. 170 (1967), 283–313. MR 209853, DOI 10.1007/BF01350606 L. A. Fialkow, A note on limits of unitarily equivalent partial isometries (preprint).
- Ralph Gellar and Lavon Page, Limits of unitarily equivalent normal operators, Duke Math. J. 41 (1974), 319–322. MR 338817
- P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283–293. MR 234310
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- P. R. Halmos, Limits of shifts, Acta Sci. Math. (Szeged) 34 (1973), 131–139. MR 338812
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682, DOI 10.1007/978-3-642-65574-6
- Norberto Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561–580. MR 390816
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 232 (1977), 205-220
- MSC: Primary 47A65
- DOI: https://doi.org/10.1090/S0002-9947-1977-0448131-6
- MathSciNet review: 0448131