Generalized Hankel conjugate transformations on rearrangement invariant spaces
HTML articles powered by AMS MathViewer
- by R. A. Kerman
- Trans. Amer. Math. Soc. 232 (1977), 111-130
- DOI: https://doi.org/10.1090/S0002-9947-1977-0450882-4
- PDF | Request permission
Abstract:
The boundedness properties of the generalized Hankel conjugate transformations ${H_\lambda }$ on certain weighted Lebesgue spaces are studied. These are used to establish a boundedness criterion for the ${H_\lambda }$ on the more general class of rearrangement invariant spaces. The positive operators in terms of which the criterion is given are used to construct pairs of spaces between which the ${H_\lambda }$ are continuous; in particular, a natural analogue of a well-known result of Zygmund concerning the classical conjugate function operator is obtained for the ${H_\lambda }$.References
- Kenneth F. Andersen, Norm inequalities for ultraspherical and Hankel conjugate functions, Canadian J. Math. 27 (1975), 162–171. MR 358203, DOI 10.4153/CJM-1975-021-7
- Colin Bennett, A Hausdorff-Young theorem for rearrangement-invariant spaces, Pacific J. Math. 47 (1973), 311–328. MR 338654, DOI 10.2140/pjm.1973.47.311
- D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canadian J. Math. 19 (1967), 599–616. MR 212512, DOI 10.4153/CJM-1967-053-7
- David W. Boyd, Indices of function spaces and their relationship to interpolation, Canadian J. Math. 21 (1969), 1245–1254. MR 412788, DOI 10.4153/CJM-1969-137-x
- A.-P. Calderón, Spaces between $L^{1}$ and $L^{\infty }$ and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273–299. MR 203444, DOI 10.4064/sm-26-3-301-304
- A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. MR 0065685 R. A. Kerman, Boundedness criteria for generalized Hankel conjugate transformations (manuscript).
- B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92. MR 199636, DOI 10.1090/S0002-9947-1965-0199636-9
- R. O’Neil and G. Weiss, The Hilbert transform and rearrangement of functions, Studia Math. 23 (1963), 189–198. MR 160084, DOI 10.4064/sm-23-2-189-198
- P. G. Rooney, On the ranges of certain fractional integrals, Canadian J. Math. 24 (1972), 1198–1216. MR 310147, DOI 10.4153/CJM-1972-130-9
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 232 (1977), 111-130
- MSC: Primary 42A40; Secondary 44A25
- DOI: https://doi.org/10.1090/S0002-9947-1977-0450882-4
- MathSciNet review: 0450882