Local and global factorizations of matrix-valued functions
HTML articles powered by AMS MathViewer
- by K. F. Clancey and I. Gohberg
- Trans. Amer. Math. Soc. 232 (1977), 155-167
- DOI: https://doi.org/10.1090/S0002-9947-1977-0454742-4
- PDF | Request permission
Abstract:
Let C be a simple closed Liapounov contour in the complex plane and A an invertible $n \times n$ matrix-valued function on C with bounded measurable entries. There is a well-known concept of factorization of the matrix function A relative to the Lebesgue space ${L_p}(C)$. The notion of local factorization of A relative to ${L_p}$ at a point ${t_0}$ in C is introduced. It is shown that A admits a factorization relative to ${L_p}(C)$ if and only if A admits a local factorization relative to ${L_p}$ at each point ${t_0}$ in C. Several problems connected with local factorizations relative to ${L_p}$ are raised.References
- M. S. Budjanu and I. C. Gohberg, General theorems on the factorization of matrix-valued functions. I. The fundamental theorem, Mat. Issled. 3 (1968), no. vyp. 2 (8), 87–103 (Russian). MR 0259609
- M. S. Budjanu and I. C. Gohberg, General theorems on the factorization of matrix-valued functions. I. The fundamental theorem, Mat. Issled. 3 (1968), no. vyp. 2 (8), 87–103 (Russian). MR 0259609
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893 —, Local Toeplitz operators (preprint).
- R. G. Douglas and Donald Sarason, Fredholm Toeplitz operators, Proc. Amer. Math. Soc. 26 (1970), 117–120. MR 259639, DOI 10.1090/S0002-9939-1970-0259639-X
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- I. C. Gohberg, The factorization problem in normed rings, functions of isometric and symmetric operators, and singular integral equations, Uspehi Mat. Nauk 19 (1964), no. 1 (115), 71–124 (Russian). MR 0163184
- I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, Vol. 41, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware. MR 0355675
- I. C. Gohberg and M. G. Kreĭn, Systems of integral equations on a half line with kernels depending on the difference of arguments, Amer. Math. Soc. Transl. (2) 14 (1960), 217–287. MR 0113114, DOI 10.1090/trans2/014/09
- I. Ts. Gokhberg and N. Ya. Krupnik, Vvedenie v teoriyu odnomernykh singulyarnykh integral′nykh operatorov, Izdat. “Štiinca”, Kishinev, 1973 (Russian). MR 0405177
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039, DOI 10.1090/mmono/026
- N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494
- M. A. Šubin, The local principle in the factorization problem, Mat. Issled. 6 (1971), no. vyp. 1 (19), 174–180 (Russian). MR 0285712
- I. B. Simonenko, A new general method of investigating linear operator equations of singular integral equation type. I, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 567–586 (Russian). MR 0179630 —, Some general questions in the theory of Riemann boundary problems, Izv. Akad. Nauk SSSR 32 (1968) = Math USSR Izv. 2 (1968), 1091-1099.
- Helmut Röhrl, On holomorphic families of fiber bundles over the Riemannian sphere, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 435–477. MR 131881, DOI 10.1215/kjm/1250711997
- Harold Widom, Singular integral equations in $L_{p}$, Trans. Amer. Math. Soc. 97 (1960), 131–160. MR 119064, DOI 10.1090/S0002-9947-1960-0119064-7
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 232 (1977), 155-167
- MSC: Primary 47G05; Secondary 45E05
- DOI: https://doi.org/10.1090/S0002-9947-1977-0454742-4
- MathSciNet review: 0454742