A law of the iterated logarithm for stable summands
HTML articles powered by AMS MathViewer
- by R. P. Pakshirajan and R. Vasudeva
- Trans. Amer. Math. Soc. 232 (1977), 33-42
- DOI: https://doi.org/10.1090/S0002-9947-1977-0455093-4
- PDF | Request permission
Abstract:
Let ${X_1},{X_2}, \ldots$ be a sequence of independent indentically distributed stable random variables with parameters $\alpha \;(0 < \alpha < 2)$ and $\beta (|\beta | \leqslant 1)$. Let ${S_n} = \sum \nolimits _{i = 1}^n {{X_i}}$. Suppose that $({S_{1,n}})$ and $({S_{2,n}})$ are independent copies of the sequence $({S_n})$. In this paper we obtain the set of all limit points in the plane of the sequence \[ \left \{ {|{n^{ - 1/\alpha }}({S_{1,n}} - {a_n}){|^{1/(\log \log n)}},|{n^{ - 1/\alpha }}({S_{2,n}} - {a_n}){|^{1/(\log \log n)}}} \right \}\] where $({a_n})$ is zero if $\alpha \ne 1$ and is $(2\beta n\log n)/\pi$ if $\alpha = 1$.References
- Leo Breiman, Probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0229267
- Joshua Chover, A law of the iterated logarithm for stable summands, Proc. Amer. Math. Soc. 17 (1966), 441β443. MR 189096, DOI 10.1090/S0002-9939-1966-0189096-2
- K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random variables, Mem. Amer. Math. Soc. 6 (1951), 12. MR 40610
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- Philip Hartman and Aurel Wintner, On the law of the iterated logarithm, Amer. J. Math. 63 (1941), 169β176. MR 3497, DOI 10.2307/2371287
- Raoul D. LePage, $\textrm {Log\ log}$ law for Gaussian processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 103β108. MR 331456, DOI 10.1007/BF00533098
- J. L. Mijnheer, Sample path properties of stable processes, Mathematical Centre Tracts, No. 59, Mathematisch Centrum, Amsterdam, 1975. Doctoral dissertation, University of Leiden, Leiden. MR 0370783
- Frank Spitzer, Principles of random walk, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1964. MR 0171290, DOI 10.1007/978-1-4757-4229-9
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 232 (1977), 33-42
- MSC: Primary 60F15
- DOI: https://doi.org/10.1090/S0002-9947-1977-0455093-4
- MathSciNet review: 0455093