On inner ideals and ad-nilpotent elements of Lie algebras
HTML articles powered by AMS MathViewer
- by Georgia Benkart
- Trans. Amer. Math. Soc. 232 (1977), 61-81
- DOI: https://doi.org/10.1090/S0002-9947-1977-0466242-6
- PDF | Request permission
Abstract:
An inner ideal of a Lie algebra L over a commutative ring k is a k-submodule B of L such that $[B[BL]] \subseteq B$. This paper investigates properties of inner ideals and obtains results relating ad-nilpotent elements and inner ideals. For example, let L be a simple Lie algebra in which $D_y^2 = 0$ implies $y = 0$, where ${D_y}$ denotes the adjoint mapping determined by y. If L satisfies the descending chain condition on inner ideals and has proper inner ideals, then L contains a subalgebra $S = \langle e,f,h\rangle$, isomorphic to the split 3-dimensional simple Lie algebra, such that $D_e^3 = D_f^3 = 0$. Lie algebras having such 3-dimensional subalgebras decompose into the direct sum of two copies of a Jordan algebra, two copies of a special Jordan module, and a Lie subalgebra of transformations of the Jordan algebra and module. The main feature of this decomposition is the correspondence between the Lie and the Jordan structures. In the special case when L is a finite dimensional, simple Lie algebra over an algebraically closed field of characteristic $p > 5$ this decomposition yields: Theorem. L is classical if and only if there is an $x \ne 0$ in L such that $D_x^{p - 1} = 0$ and if $D_y^2 = 0$ implies $y = 0$. The proof involves actually constructing a Cartan subalgebra which has 1-dimensional root spaces for nonzero roots and then using the Block axioms.References
- B. N. Allison, A construction of Lie algebras from ${\cal J}$-ternary algebras, Amer. J. Math. 98 (1976), no. 2, 285–294. MR 430010, DOI 10.2307/2373884
- Richard E. Block, On the Mills-Seligman axioms for Lie algebras of classical type, Trans. Amer. Math. Soc. 121 (1966), 378–392. MR 188356, DOI 10.1090/S0002-9947-1966-0188356-3
- Richard E. Block, Determination of the differentiably simple rings with a minimal ideal, Ann. of Math. (2) 90 (1969), 433–459. MR 251088, DOI 10.2307/1970745
- W. Hein, A construction of Lie algebras by triple systems, Trans. Amer. Math. Soc. 205 (1975), 79–95. MR 393153, DOI 10.1090/S0002-9947-1975-0393153-5
- Ulrich Hirzebruch, Über eine Klasse von Lie-Algebren, J. Algebra 11 (1969), 461–467 (German). MR 237588, DOI 10.1016/0021-8693(69)90067-2
- John B. Jacobs, On classifying simple Lie algebras of prime characteristic by nilpotent elements, J. Algebra 19 (1971), 31–50. MR 301065, DOI 10.1016/0021-8693(71)90114-1
- N. Jacobson, Enveloping algebras of semi-simple Lie algebras, Canad. J. Math. 2 (1950), 257–266. MR 42398, DOI 10.4153/cjm-1950-023-5
- N. Jacobson, A note on three dimensional simple Lie algebras, J. Math. Mech. 7 (1958), 823–831. MR 0097432, DOI 10.1512/iumj.1958.7.57047
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099, DOI 10.1090/coll/039
- A. I. Kostrikin, The Burnside problem, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 3–34 (Russian). MR 0132100
- A. I. Kostrikin, Simple Lie $p$-algebras, Trudy Mat. Inst. Steklov. 64 (1961), 79–89 (Russian). MR 0132086
- A. I. Kostrikin, Strong degeneracy of simple Lie $p$-algebras, Dokl. Akad. Nauk SSSR 150 (1963), 248–250. MR 0148718
- A. I. Kostrikin, Squares of adjoined endomorphisms in simple Lie $p$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 445–487 (Russian). MR 0218415
- Kevin McCrimmon, The radical of a Jordan algebra, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671–678. MR 268238, DOI 10.1073/pnas.62.3.671
- G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 0245627, DOI 10.1007/978-3-642-94985-2
- Helmut Strade, Nonclassical simple Lie algebras and strong degeneration, Arch. Math. (Basel) 24 (1973), 482–485. MR 376788, DOI 10.1007/BF01228244
- J. Tits, Une classe d’algèbres de Lie en relation avec les algèbres de Jordan, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 530–535 (French). MR 0146231, DOI 10.1016/S1385-7258(62)50051-6
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 232 (1977), 61-81
- MSC: Primary 17B05
- DOI: https://doi.org/10.1090/S0002-9947-1977-0466242-6
- MathSciNet review: 0466242