Restrictions of convex subsets of $C(X)$
HTML articles powered by AMS MathViewer
- by Per Hag PDF
- Trans. Amer. Math. Soc. 233 (1977), 283-294 Request permission
Abstract:
The main result of this paper is a theorem giving a measure-theoretic condition which is necessary and sufficient for a closed convex subset S of $C(X)$ to have the so-called bounded extension property with respect to a closed subset F of X. This theorem generalizes well-known results on closed subspaces by Bishop, Gamelin and Semadeni.References
-
E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of ${\mathcal {C}_{\mathbf {C}}}(X)$, Preprint series, Inst. of Math., Univ. of Oslo, 1970.
- The closedness of the image of a convex set, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 171–174 (Russian). MR 0291780
- Errett Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140–143. MR 133462, DOI 10.1090/S0002-9939-1962-0133462-4 N. Dunford and J. T. Schwartz, Linear operators. Vol. I, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- T. W. Gamelin, Restrictions of subspaces of $C(X)$, Trans. Amer. Math. Soc. 112 (1964), 278–286. MR 162132, DOI 10.1090/S0002-9947-1964-0162132-8
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Irving Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415–435. MR 173957, DOI 10.1090/S0002-9947-1962-0173957-5 P. Hag, Restrictions of convex subsets of $C(X)$, Ph. D. dissertation, Univ. of Michigan, 1972.
- Per Hag, A generalization of the Rudin-Carleson theorem, Proc. Amer. Math. Soc. 43 (1974), 341–344. MR 338755, DOI 10.1090/S0002-9939-1974-0338755-1
- Per Hag, Erratum to: “A generalization of the Hudin-Carleson theorem” (Proc. Amer. Math. Soc. 43 (1974), 341–344), Proc. Amer. Math. Soc. 60 (1976), 377. MR 415325, DOI 10.1090/S0002-9939-1976-0415325-X
- E. Michael and A. Pełczyński, A linear extension theorem, Illinois J. Math. 11 (1967), 563–579. MR 217582, DOI 10.1215/ijm/1256054447
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555 Z. Semadeni, Simultaneous extensions and projections in spaces of continuous functions Lecture Notes, Univ. of Aarhus, 1965.
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 233 (1977), 283-294
- MSC: Primary 46E10
- DOI: https://doi.org/10.1090/S0002-9947-1977-0467264-1
- MathSciNet review: 0467264