Restrictions of convex subsets of $C(X)$
HTML articles powered by AMS MathViewer
 by Per Hag PDF
 Trans. Amer. Math. Soc. 233 (1977), 283294 Request permission
Abstract:
The main result of this paper is a theorem giving a measuretheoretic condition which is necessary and sufficient for a closed convex subset S of $C(X)$ to have the socalled bounded extension property with respect to a closed subset F of X. This theorem generalizes wellknown results on closed subspaces by Bishop, Gamelin and Semadeni.References

E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of ${\mathcal {C}_{\mathbf {C}}}(X)$, Preprint series, Inst. of Math., Univ. of Oslo, 1970.
 The closedness of the image of a convex set, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 171–174 (Russian). MR 0291780
 Errett Bishop, A general RudinCarleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140–143. MR 133462, DOI 10.1090/S00029939196201334624 N. Dunford and J. T. Schwartz, Linear operators. Vol. I, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
 T. W. Gamelin, Restrictions of subspaces of $C(X)$, Trans. Amer. Math. Soc. 112 (1964), 278–286. MR 162132, DOI 10.1090/S00029947196401621328
 Theodore W. Gamelin, Uniform algebras, PrenticeHall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
 Irving Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415–435. MR 173957, DOI 10.1090/S00029947196201739575 P. Hag, Restrictions of convex subsets of $C(X)$, Ph. D. dissertation, Univ. of Michigan, 1972.
 Per Hag, A generalization of the RudinCarleson theorem, Proc. Amer. Math. Soc. 43 (1974), 341–344. MR 338755, DOI 10.1090/S00029939197403387551
 Per Hag, Erratum to: “A generalization of the HudinCarleson theorem” (Proc. Amer. Math. Soc. 43 (1974), 341–344), Proc. Amer. Math. Soc. 60 (1976), 377. MR 415325, DOI 10.1090/S0002993919760415325X
 E. Michael and A. Pełczyński, A linear extension theorem, Illinois J. Math. 11 (1967), 563–579. MR 217582, DOI 10.1215/ijm/1256054447
 H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555 Z. Semadeni, Simultaneous extensions and projections in spaces of continuous functions Lecture Notes, Univ. of Aarhus, 1965.
Additional Information
 © Copyright 1977 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 233 (1977), 283294
 MSC: Primary 46E10
 DOI: https://doi.org/10.1090/S00029947197704672641
 MathSciNet review: 0467264