On characterizing the standard quantum logics
HTML articles powered by AMS MathViewer
- by W. John Wilbur
- Trans. Amer. Math. Soc. 233 (1977), 265-282
- DOI: https://doi.org/10.1090/S0002-9947-1977-0468710-X
- PDF | Request permission
Abstract:
Let $\mathcal {L}$ be a complete projective logic. Then $\mathcal {L}$ has a natural representation as the lattice of $\langle { \cdot , \cdot } \rangle$-closed subspaces of a left vector space V over a division ring D, where $\langle {\cdot ,\cdot } \rangle$ is a definite $\theta$-bilinear symmetric form on V, $\theta$ being some involutive antiautomorphism of D. Now a well-known theorem of Piron states that if D is isomorphic to the real field, the complex field or the sfield of quaternions, if $\theta$ is continuous, and if the dimension of $\mathcal {L}$ is properly restricted, then $\mathcal {L}$ is just one of the standard Hilbert space logics. Here we also assume $\mathcal {L}$ is a complete projective logic. Then if every $\theta$-fixed element of D is in the center of D and can be written as $\pm d\theta (d)$, some $d \in D$, and if the dimension of $\mathcal {L}$ is properly restricted, we show that $\mathcal {L}$ is just one of the standard Hilbert space logics over the reals, the complexes, or the quaternions. One consequence is the extension of Piron’s theorem to discontinuous $\theta$. Another is a purely lattice theoretic characterization of the lattice of closed subspaces of separable complex Hilbert space.References
- E. G. Beltrametti and G. Cassinelli, Quantum mechanics and $p$-adic numbers, Found. Phys. 2 (1972), 1–7. MR 331996, DOI 10.1007/BF00708614
- Garrett Birkhoff, Lattice Theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR 0029876
- Garrett Birkhoff and John von Neumann, The logic of quantum mechanics, Ann. of Math. (2) 37 (1936), no. 4, 823–843. MR 1503312, DOI 10.2307/1968621
- Platon C. Deliyannis, Vector space models of abstract quantum logics, J. Mathematical Phys. 14 (1973), 249–253. MR 325052, DOI 10.1063/1.1666304
- J.-P. Eckmann and Ph. Ch. Zabey, Impossibility of quantum mechanics in a Hilbert space over a finite field, Helv. Phys. Acta 42 (1969), 420–424. MR 246600
- Andrew M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885–893. MR 0096113, DOI 10.1512/iumj.1957.6.56050
- S. Gudder and C. Piron, Observables and the field in quantum mechanics, J. Mathematical Phys. 12 (1971), 1583–1588. MR 309442, DOI 10.1063/1.1665777
- Stanley P. Gudder, Quantum logics, physical space, position observables and symmetry, Rep. Mathematical Phys. 4 (1973), 193–202. MR 325030, DOI 10.1016/0034-4877(73)90024-4
- Samuel S. Holland Jr., Remarks on type $\textrm {I}$ Baer and Baer $^{\ast }$-rings, J. Algebra 27 (1973), 516–522. MR 330216, DOI 10.1016/0021-8693(73)90061-6
- A. Kolmogoroff, Zur Begründung der projektiven Geometrie, Ann. of Math. (2) 33 (1932), no. 1, 175–176 (German). MR 1503044, DOI 10.2307/1968111
- M. J. Mączyński, Hilbert space formalism of quantum mechanics without the Hilbert space axiom, Rep. Mathematical Phys. 3 (1972), no. 3, 209–219. MR 321449, DOI 10.1016/0034-4877(72)90005-5
- M. J. Mączyński, The field of real numbers in axiomatic quantum mechanics, J. Mathematical Phys. 14 (1973), 1469–1471. MR 329456, DOI 10.1063/1.1666206
- Ronald P. Morash, The orthomodular identity and metric completeness of the coordinatizing division ring, Proc. Amer. Math. Soc. 27 (1971), 446–448. MR 272689, DOI 10.1090/S0002-9939-1971-0272689-3
- C. Piron, Axiomatique quantique, Helv. Phys. Acta 37 (1964), 439–468 (French, with English summary). MR 204048
- V. S. Varadarajan, Geometry of quantum theory. Vol. I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. MR 0471674
- Edwin Weiss and Neal Zierler, Locally compact division rings, Pacific J. Math. 8 (1958), 369–371. MR 121432, DOI 10.2140/pjm.1958.8.369
- W. John Wilbur, Quantum logic and the locally convex spaces, Trans. Amer. Math. Soc. 207 (1975), 343–360. MR 367607, DOI 10.1090/S0002-9947-1975-0367607-1
- Neal Zierler, Axioms for non-relativistic quantum mechanics, Pacific J. Math. 11 (1961), 1151–1169. MR 140972, DOI 10.2140/pjm.1961.11.1151
- Neal Zierler, On the lattice of closed subspaces of Hilbert space, Pacific J. Math. 19 (1966), 583–586. MR 202647, DOI 10.2140/pjm.1966.19.583
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 233 (1977), 265-282
- MSC: Primary 81.06
- DOI: https://doi.org/10.1090/S0002-9947-1977-0468710-X
- MathSciNet review: 0468710