On the spectra of the restrictions of an operator
HTML articles powered by AMS MathViewer
- by Domingo A. Herrero
- Trans. Amer. Math. Soc. 233 (1977), 45-58
- DOI: https://doi.org/10.1090/S0002-9947-1977-0473870-0
- PDF | Request permission
Abstract:
Let T be a bounded linear operator from a complex Banach space $\mathfrak {X}$ into itself and let $\mathfrak {M}$ be a closed invariant subspace of T. Let $T|\mathfrak {M}$ denote the restriction of T to $\mathfrak {M}$ and let $\sigma$ denote the spectrum of an operator. The main results say that: (1) If $\mathfrak {X}$ is the closed linear span of a family $\{ {\mathfrak {M}_v}\}$ of invariant subspaces, then every component of $\sigma (T)$ intersects the closure of the set ${ \cup _v}\sigma (T|{\mathfrak {M}_v})$ and every point of $\sigma (T)\backslash { \cup _v}\sigma (T|{\mathfrak {M}_v})$ is an approximate eigenvalue of T. (2) If $\mathfrak {X}$ is the closed linear span of a finite family $\{ {\mathfrak {M}_1}, \ldots ,{\mathfrak {M}_n}\}$ of invariant subspaces, and the spectra $\sigma (T|{\mathfrak {M}_j}),j = 1,2, \ldots ,n$, are pairwise disjoint, then $\mathfrak {X}$ is actually equal to the algebraic direct sum of the ${\mathfrak {M}_j}$’s, the ${\mathfrak {M}_j}$’s are hyperinvariant subspaces of T and $\sigma (T) = \cup _{j = 1}^n\sigma (T|{\mathfrak {M}_j})$. This last result is sharp in a certain specified sense. The results of (1) have a “dual version” $(1’)$; (1) and $(1’)$ are applied to analyze the spectrum of an operator having a chain of invariant subspaces which is “piecewise well-ordered by inclusion", extending in several ways recent results of J. D. Stafney on the spectra of lower triangular matrices.References
- T. Crimmins and P. Rosenthal, On the decomposition of invariant subspaces, Bull. Amer. Math. Soc. 73 (1967), 97–99. MR 203463, DOI 10.1090/S0002-9904-1967-11659-8
- R. G. Douglas and Carl Pearcy, On a topology for invariant subspaces, J. Functional Analysis 2 (1968), 323–341. MR 0233224, DOI 10.1016/0022-1236(68)90010-4
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- Domingo A. Herrero, On analytically invariant subspaces and spectra, Trans. Amer. Math. Soc. 233 (1977), 37–44. MR 482289, DOI 10.1090/S0002-9947-1977-0482289-8
- Domingo Antonio Herrero and Norberto Salinas, Analytically invariant and bi-invariant subspaces, Trans. Amer. Math. Soc. 173 (1972), 117–136. MR 312294, DOI 10.1090/S0002-9947-1972-0312294-9 D. Hilbert, Über die Entwicklung einer beliebigen analytischen Funktion einer Variablen in eine unendliche nach ganzen rationalen Funktionen fortschreitende Reihe, Gottinger Nachritten (1897), 63-70.
- T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678–686. MR 312304, DOI 10.1215/ijm/1256065551
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- James D. Stafney, The spectrum of certain lower triangular matrices as operators on the $l_{p}$ spaces, Pacific J. Math. 42 (1972), 515–525. MR 315475, DOI 10.2140/pjm.1972.42.515
- J. L. Walsh and Helen G. Russell, On the convergence and overconvergence of sequences of polynomials of best simultaneous approximation to several functions analytic in distinct regions, Trans. Amer. Math. Soc. 36 (1934), no. 1, 13–28. MR 1501732, DOI 10.1090/S0002-9947-1934-1501732-8
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 233 (1977), 45-58
- MSC: Primary 47A10; Secondary 47A15
- DOI: https://doi.org/10.1090/S0002-9947-1977-0473870-0
- MathSciNet review: 0473870