The $p$-adic log gamma function and $p$-adic Euler constants
HTML articles powered by AMS MathViewer
- by Jack Diamond
- Trans. Amer. Math. Soc. 233 (1977), 321-337
- DOI: https://doi.org/10.1090/S0002-9947-1977-0498503-9
- PDF | Request permission
Abstract:
We define ${G_p}$, a p-adic analog of the classical log gamma function and show it satisfies relations similar to the standard formulas for log gamma. We also define p-adic Euler constants and use them to obtain results on $G{’_p}$ and on the logarithmic derivative of Morita’s ${\Gamma _p}$.References
- Jack Diamond, On the values of $p$-adic $L$-functions at positive integers, Acta Arith. 35 (1979), no. 3, 223–237. MR 550294, DOI 10.4064/aa-35-3-223-237
- Jean Fresnel, Nombres de Bernoulli et fonctions $L$ $p$-adiques, Ann. Inst. Fourier (Grenoble) 17 (1967), no. fasc. 2, 281–333 (1968) (French). MR 224570, DOI 10.5802/aif.271
- Kenkichi Iwasawa, Lectures on $p$-adic $L$-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0360526, DOI 10.1515/9781400881703
- M. Krasner, Rapport sur le prolongement analytique dans les corps valués complets par la méthode des éléments analytiques quasi-connexes, Table Ronde d’Analyse Non Archimédienne (Paris, 1972) Bull. Soc. Math. France, Mém. No. 39-40, Soc. Math. France, Paris, 1974, pp. 131–254 (French). MR 0385168, DOI 10.24033/msmf.166
- Tomio Kubota and Heinrich-Wolfgang Leopoldt, Eine $p$-adische Theorie der Zetawerte. I. Einführung der $p$-adischen Dirichletschen $L$-Funktionen, J. Reine Angew. Math. 214(215) (1964), 328–339 (German). MR 163900
- D. H. Lehmer, Euler constants for arithmetical progressions, Acta Arith. 27 (1975), 125–142. MR 369233, DOI 10.4064/aa-27-1-125-142 Y. Morita, A p-adic analog of the T function, (to appear). N. Nielsen, Die Gammafunktion, Bände I, II, Chelsea, New York, 1965. MR 32 #2622.
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 233 (1977), 321-337
- MSC: Primary 12B40; Secondary 33A15
- DOI: https://doi.org/10.1090/S0002-9947-1977-0498503-9
- MathSciNet review: 0498503