The oscillatory behavior of certain derivatives
HTML articles powered by AMS MathViewer
- by Richard J. O’Malley and Clifford E. Weil PDF
- Trans. Amer. Math. Soc. 234 (1977), 467-481 Request permission
Abstract:
The derivatives considered are the approximate derivative and the kth Peano derivative. The main results strengthen the Darboux property, which both of these derivatives possess. Theorem. If the approximate derivative ${f’_{{\text {ap}}}}$ of f exists on an interval and if, for $M \geqslant 0,{f’_{{\text {ap}}}}$ attains both M and — M, then there is an open subinterval where ${f’_{{\text {ap}}}} = f’$ and on which $f’$ attains both M and — M. The other main theorem is obtained from this one by replacing the approximate derivative by the kth Peano derivative.References
- Casper Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960), 962–966. MR 118792, DOI 10.1090/S0002-9939-1960-0118792-2
- R. D. James, Generalized $n$th primitives, Trans. Amer. Math. Soc. 76 (1954), 149–176. MR 60002, DOI 10.1090/S0002-9947-1954-0060002-0 J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometrical series, Fund. Math. 26 (1936), 1-43.
- H. William Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444–456. MR 62207, DOI 10.1090/S0002-9947-1954-0062207-1
- Richard J. O’Malley, A density property and applications, Trans. Amer. Math. Soc. 199 (1974), 75–87. MR 360955, DOI 10.1090/S0002-9947-1974-0360955-X G. Tolstoff, Sur le dérivée approximative exact, Mat. Sb. 4 (1938), 499-504.
- S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313–324. MR 285678, DOI 10.1112/plms/s3-22.2.313
- Clifford E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363–376. MR 176007, DOI 10.1090/S0002-9947-1965-0176007-2
- Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54 (French). MR 37338, DOI 10.1090/S0002-9947-1950-0037338-9
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 234 (1977), 467-481
- MSC: Primary 26A24
- DOI: https://doi.org/10.1090/S0002-9947-1977-0453940-3
- MathSciNet review: 0453940