Ergodic equivalence relations, cohomology, and von Neumann algebras. I
HTML articles powered by AMS MathViewer
- by Jacob Feldman and Calvin C. Moore
- Trans. Amer. Math. Soc. 234 (1977), 289-324
- DOI: https://doi.org/10.1090/S0002-9947-1977-0578656-4
- PDF | Request permission
Abstract:
Let $(X,\mathcal {B})$ be a standard Borel space, $R \subset X \times X$ an equivalence relation $\in \mathcal {B} \times \mathcal {B}$. Assume each equivalence class is countable. Theorem 1: $\exists$ a countable group G of Borel isomorphisms of $(X,\mathcal {B})$ so that $R = \{ (x,gx):g \in G\}$. G is far from unique. However, notions like invariance and quasi-invariance and R-N derivatives of measures depend only on R, not the choice of G. We develop some of the ideas of Dye [1], [2] and Krieger [1]-[5] in a fashion explicitly avoiding any choice of G; we also show the connection with virtual groups. A notion of “module over R” is defined, and we axiomatize and develop a cohomology theory for R with coefficients in such a module. Surprising application (contained in Theorem 7): let $\alpha ,\beta$ be rationally independent irrationals on the circle $\mathbb {T}$, and f Borel: $\mathbb {T} \to \mathbb {T}$. Then $\exists$ Borel $g,h:\mathbb {T} \to \mathbb {T}$ with $f(x) = (g(ax)/g(x))(h(\beta x)/h(x))$ a.e. The notion of “skew product action” is generalized to our context, and provides a setting for a generalization of the Krieger invariant for the R-N derivative of an ergodic transformation: we define, for a cocycle c on R with values in the group A, a subgroup of A depending only on the cohomology class of c, and in Theorem 8 identify this with another subgroup, the “normalized proper range” of c, defined in terms of the skew action. See also Schmidt [1].References
- Warren Ambrose, Representation of ergodic flows, Ann. of Math. (2) 42 (1941), 723–739. MR 4730, DOI 10.2307/1969259
- Hirotada Anzai, Ergodic skew product transformations on the torus, Osaka Math. J. 3 (1951), 83–99. MR 40594
- Louis Auslander and Calvin C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. 62 (1966), 199. MR 207910
- Alain Connes, Une classification des facteurs de type $\textrm {III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115
- Alain Connes and M. Takesaki, Flots des poids sur les facteurs de type $\textrm {III}$, C. R. Acad. Sci. Paris Sér. A 278 (1974), 945–948 (French). MR 355625 —[2], The flow of weights on a factor of type III (preprint).
- Dang Ngoc Nghiem, On the classification of dynamical systems, Ann. Inst. H. Poincaré Sect. B (N.S.) 9 (1973), 397–425. MR 0335755
- H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119–159. MR 131516, DOI 10.2307/2372852
- H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551–576. MR 158048, DOI 10.2307/2373108 Eilenberg and S. Mac Lane [1], Cohomology theory in abstract groups. I, Ann. of Math. (2) 48 (1947), 51-78. MR 8, 367.
- J. Feldman and D. A. Lind, Hyperfiniteness and the Halmos-Rohlin theorem for nonsingular Abelian actions, Proc. Amer. Math. Soc. 55 (1976), no. 2, 339–344. MR 409764, DOI 10.1090/S0002-9939-1976-0409764-0
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, Bull. Amer. Math. Soc. 81 (1975), no. 5, 921–924. MR 425075, DOI 10.1090/S0002-9904-1975-13888-2
- J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476. MR 139135, DOI 10.1090/S0002-9939-1962-0139135-6
- Toshihiro Hamachi, Yukimasa Oka, and Motosige Osikawa, Flows associated with ergodic non-singular transformation groups, Publ. Res. Inst. Math. Sci. 11 (1975/76), no. 1, 31–50. MR 0390172, DOI 10.2977/prims/1195191686
- Shizuo Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635–641. MR 14222 A. Krieger [1], On non-singular transformations of a measure space. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 11 (1969), 83-97. MR 39 # 1628.
- Wolfgang Krieger, On non-singular transformations of a measure space. I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 83–97; ibid. 11 (1969), 98–119. MR 240279, DOI 10.1007/BF00531811
- Wolfgang Krieger, On constructing non-$^{\ast }$isomorphic hyperfinite factors of type III, J. Functional Analysis 6 (1970), 97–109. MR 0259624, DOI 10.1016/0022-1236(70)90049-2
- Wolfgang Krieger, On a class of hyperfinite factors that arise from null-recurrent Markov chains, J. Functional Analysis 7 (1971), 27–42. MR 0275181, DOI 10.1016/0022-1236(71)90042-5
- Wolfgang Krieger, On the Araki-Woods asymptotic ratio set and non-singular transformations of a measure space, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Lecture Notes in Math., Vol. 160, Springer, Berlin, 1970, pp. 158–177. MR 0414823
- Wolfgang Krieger, On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), no. 1, 19–70. MR 415341, DOI 10.1007/BF01360278 Kuratowski [1], Topologie, Warsaw-Livoue, 1933.
- George W. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327–335. MR 143874
- George W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187–207. MR 201562, DOI 10.1007/BF01361167
- Calvin C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40–63; ibid. 113 (1964), 64–86. MR 171880, DOI 10.1090/S0002-9947-1964-0171880-5 —[2], Extensions and low dimensional cohomology theory of locally compact groups. II, Trans. Amer. Math. Soc. 113 (1964), 64-86. MR 30 #2106.
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), no. 1, 35–58. MR 414776, DOI 10.1090/S0002-9947-1976-0414776-1
- Joseph Max Rosenblatt, Equivalent invariant measures, Israel J. Math. 17 (1974), 261–270. MR 350320, DOI 10.1007/BF02756875
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701 Schmidt [1], Cohomology and skew products of ergodic transformations, Warwick, 1974 (preprint).
- Joel J. Westman, Cohomology for the ergodic actions of countable groups, Proc. Amer. Math. Soc. 30 (1971), 318–320. MR 280683, DOI 10.1090/S0002-9939-1971-0280683-1
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 234 (1977), 289-324
- MSC: Primary 22D40; Secondary 28A65, 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1977-0578656-4
- MathSciNet review: 0578656