Ergodic equivalence relations, cohomology, and von Neumann algebras. II
HTML articles powered by AMS MathViewer
- by Jacob Feldman and Calvin C. Moore
- Trans. Amer. Math. Soc. 234 (1977), 325-359
- DOI: https://doi.org/10.1090/S0002-9947-1977-0578730-2
- PDF | Request permission
Abstract:
Let R be a Borel equivalence relation with countable equivalence classes, on the standard Borel space $(X,\mathcal {A},\mu )$. Let $\sigma$ be a 2-cohomology class on R with values in the torus $\mathbb {T}$. We construct a factor von Neumann algebra ${\mathbf {M}}(R,\sigma )$, generalizing the group-measure space construction of Murray and von Neumann [1] and previous generalizations by W. Krieger [1] and G. Zeller-Meier [1]. Very roughly, ${\mathbf {M}}(R,\sigma )$ is a sort of twisted matrix algebra whose elements are matrices $({a_{x,y}})$, where $(x,y) \in R$. The main result, Theorem 1, is the axiomatization of such factors; any factor M with a regular MASA subalgebra A, and possessing a conditional expectation from M onto A, and isomorphic to ${\mathbf {M}}(R,\sigma )$ in such a manner that A becomes the “diagonal matrices"; $(R,\sigma )$ is uniquely determined by M and A. A number of results are proved, linking invariants and automorphisms of the system (M, A) with those of $(R,\sigma )$. These generalize results of Singer [1] and of Connes [1]. Finally, several results are given which contain fragmentary information about what happens with a single M but two different subalgebras ${{\mathbf {A}}_1},{{\mathbf {A}}_2}$.References
- Louis Auslander and Calvin C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. 62 (1966), 199. MR 207910
- Alain Connes, Une classification des facteurs de type $\textrm {III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115
- Alain Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 4, x, 121–155 (1975) (French, with English summary). MR 377533
- A. Connes, A factor not anti-isomorphic to itself, Ann. of Math. (2) 101 (1975), 536–554. MR 370209, DOI 10.2307/1970940
- Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- J. Dixmier, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. (2) 59 (1954), 279–286 (French). MR 59486, DOI 10.2307/1969692
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, Bull. Amer. Math. Soc. 81 (1975), no. 5, 921–924. MR 425075, DOI 10.1090/S0002-9904-1975-13888-2
- Bent Fuglede and Richard V. Kadison, On a conjecture of Murray and von Neumann, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 420–425. MR 43390, DOI 10.1073/pnas.37.7.420
- P. Ghez, R. Lima, and D. Testard, Une extension d’un théorème de A. Connes sur les facteurs constructibles, Comm. Math. Phys. 32 (1973), 305–311 (French). MR 351319
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549 Hahn [1], Haar measures and convolution algebras on ergodic groupoids, Thesis, Harvard Univ., 1975.
- Richard V. Kadison and John R. Ringrose, Derivations and automorphisms of operator algebras, Comm. Math. Phys. 4 (1967), 32–63. MR 206735
- Wolfgang Krieger, On constructing non-$^{\ast }$isomorphic hyperfinite factors of type III, J. Functional Analysis 6 (1970), 97–109. MR 0259624, DOI 10.1016/0022-1236(70)90049-2
- Wolfgang Krieger, On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), no. 1, 19–70. MR 415341, DOI 10.1007/BF01360278
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- Marc A. Rieffel and Alfons Van Daele, The commutation theorem for tensor products of von Neumann algebras, Bull. London Math. Soc. 7 (1975), no. 3, 257–260. MR 383096, DOI 10.1112/blms/7.3.257
- I. E. Segal, Abstract probability spaces and a theorem of Kolmogoroff, Amer. J. Math. 76 (1954), 721–732. MR 63602, DOI 10.2307/2372714
- I. M. Singer, Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117–133. MR 66567, DOI 10.2307/2372424
- Masamichi Takesaki, Conditional expectations in von Neumann algebras, J. Functional Analysis 9 (1972), 306–321. MR 0303307, DOI 10.1016/0022-1236(72)90004-3
- Jun Tomiyama, On some types of maximal abelian subalgebras, J. Functional Analysis 10 (1972), 373–386. MR 0341126, DOI 10.1016/0022-1236(72)90035-3
- A. M. Veršik, Nonmeasurable decompositions, orbit theory, algebras of operators, Soviet Math. Dokl. 12 (1971), 1218–1222. MR 0287331
- G. Zeller-Meier, Produits croisés d’une $C^{\ast }$-algèbre par un groupe d’automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101–239 (French). MR 241994
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 234 (1977), 325-359
- MSC: Primary 22D40; Secondary 28A65, 46L10
- DOI: https://doi.org/10.1090/S0002-9947-1977-0578730-2
- MathSciNet review: 0578730