Homotopy and uniform homotopy
HTML articles powered by AMS MathViewer
- by Allan Calder and Jerrold Siegel
- Trans. Amer. Math. Soc. 235 (1978), 245-270
- DOI: https://doi.org/10.1090/S0002-9947-1978-0458416-6
- PDF | Request permission
Abstract:
It is shown that the sets, homotopy and uniform homotopy classes of maps from a finite dimensional normal space to a space of finite type with finite fundamental group, coincide. Applications of this result to the study of remainders of Stone-Cech compactifications, Kan extensions, and other areas are given.References
- Allan Calder, The cohomotopy groups of Stone-Čech increments, Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math. 34 (1972), 37–44. MR 0303536
- Allan Calder, On the cohomology of $\beta R^{n}$, Quart. J. Math. Oxford Ser. (2) 25 (1974), 385–394. MR 365549, DOI 10.1093/qmath/25.1.385
- Allan Calder, Uniform homotopy, Fund. Math. 102 (1979), no. 2, 91–99. MR 525932, DOI 10.4064/fm-102-2-91-99
- Allan Calder and Jerrold Siegel, Homotopy and Kan extensions, Categorical topology (Proc. Conf., Mannheim, 1975) Lecture Notes in Math., Vol. 540, Springer, Berlin, 1976, pp. 152–163. MR 0440532
- A. Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York-Berlin, 1972 (German). MR 0415602
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
- C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200–242. MR 20771, DOI 10.2307/2371848
- Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952. MR 0050886
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 105667, DOI 10.1090/S0002-9947-1959-0105667-4
- Meyer Jerison, Jerrold Siegel, and Stephen Weingram, Distinctive properties of Stone-Čech compactifications, Topology 8 (1969), 195–201. MR 243285, DOI 10.1016/0040-9383(69)90009-3 A. T. Lundell and S. Weingram, The topology of CW complexes, Van Nostrand, Princeton, N. J., 1969.
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
- Kiiti Morita, Čech cohomology and covering dimension for topological spaces, Fund. Math. 87 (1975), 31–52. MR 362264, DOI 10.4064/fm-87-1-31-52 —, On generalizations of Borsuk’s homotopy extension theorem, Fund. Math. 87 (1975), 1-6.
- A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR 0394604
- James Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246. MR 154286, DOI 10.1016/0040-9383(63)90006-5
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Patricia Tulley, On regularity in Hurewicz fiber spaces, Trans. Amer. Math. Soc. 116 (1965), 126–134. MR 189036, DOI 10.1090/S0002-9947-1965-0189036-X
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56–69. MR 171284, DOI 10.2307/1970382
- Russell C. Walker, The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR 0380698
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 235 (1978), 245-270
- MSC: Primary 55D99; Secondary 54E99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0458416-6
- MathSciNet review: 0458416