Some one-relator Hopfian groups
HTML articles powered by AMS MathViewer
- by Donald J. Collins
- Trans. Amer. Math. Soc. 235 (1978), 363-374
- DOI: https://doi.org/10.1090/S0002-9947-1978-0460468-4
- PDF | Request permission
Abstract:
The group presented by \[ (a,t;{t^{ - 1}}{a^l}t = {a^m})\] is non-Hopfian if $l,m \ne \pm 1$ and $\pi (l) \ne \pi (m)$, where $\pi (l)$ and $\pi (m)$ denote the sets of prime divisors of l and m. By contrast, we prove that if w is a word of the free group $F({a_1},{a_2})$ which is not primitive and not a proper power, then the group $({a_1},{a_2},t;{t^{ - 1}}{w^l}t = {w^m})$ is Hopfian.References
- Gilbert Baumslag, Residually finite one-relator groups, Bull. Amer. Math. Soc. 73 (1967), 618–620. MR 212078, DOI 10.1090/S0002-9904-1967-11799-3
- Gilbert Baumslag and Donald Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201. MR 142635, DOI 10.1090/S0002-9904-1962-10745-9
- Gilbert Baumslag and Arthur Steinberg, Residual nilpotence and relations in free groups, Bull. Amer. Math. Soc. 70 (1964), 283–284. MR 158001, DOI 10.1090/S0002-9904-1964-11123-X
- I. M. S. Dey and Hanna Neumann, The Hopf property of free products, Math. Z. 117 (1970), 325–339. MR 276352, DOI 10.1007/BF01109851 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966. MR 34 #7617.
- James McCool, Some finitely presented subgroups of the automorphism group of a free group, J. Algebra 35 (1975), 205–213. MR 396764, DOI 10.1016/0021-8693(75)90045-9
- Stephen Meskin, Nonresidually finite one-relator groups, Trans. Amer. Math. Soc. 164 (1972), 105–114. MR 285589, DOI 10.1090/S0002-9947-1972-0285589-5
- Charles F. Miller III, On group-theoretic decision problems and their classification, Annals of Mathematics Studies, No. 68, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0310044
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 235 (1978), 363-374
- MSC: Primary 20E30
- DOI: https://doi.org/10.1090/S0002-9947-1978-0460468-4
- MathSciNet review: 0460468