LATTICE-VALUED BOREL MEASURES. II

BY

SURJIT SINGH KHURANA

ABSTRACT. Let T be a completely regular Hausdorff space, $C_b(T)$ the set of all bounded real-valued continuous functions on T, E a boundedly monotone complete ordered vector space, and $\varphi: C_b(T) \to E$ a positive linear map. It is proved that under certain conditions there exist σ-additive, τ-smooth or tight E-valued measures on T which represent φ.

Let T be a completely regular Hausdorff space, $C_b(T)$ the vector-lattice of all bounded, real-valued functions on T. Let E be a boundedly complete partially ordered vector space and $\varphi: C_b(T) \to E$ a positive linear map, i.e., $f \in C_b(T), f > 0$ implies $\varphi(f) > 0$. In case T is compact, it is known ([2], [5]) that a quasi-regular Borel measure μ on T which represents φ, i.e., $\varphi(f) = \int f d\mu$, $\forall f \in C(T)$, all continuous real-valued functions on T (see [4], [5] for details). The more general case of a Hausdorff completely regular space is the aim of study in this paper.

For a topological space Y let $\mathcal{B}(Y)$ be the σ-algebra of all Borel subsets of Y and $\mathcal{B}_0(Y)$ the σ-algebra of all Baire subsets of Y (that is, the smallest σ-algebra which makes each bounded continuous function on Y measurable). Let $B(Y)$ ($B_0(Y)$) be the space of all bounded Borel (Baire) measurable functions on Y. For basic facts about vector lattices we refer to [1] (see also [2], [4]-[9]). We shall make use of the result proved in [2], that if a boundedly σ-complete vector lattice E contains a vector subspace F which is monotone order σ-closed and if F contains a vector sublattice G of E, then F contains the order σ-closure of G. If S is a Stonian (σ-Stonian) compact Hausdorff space we define a mapping $\psi: B(S) \to C(S)$ ($\psi_1: B_0(S) \to C(S)$), $\psi(f) = f$ ($\psi_1(f) = f$) except on a meagre subset of S. It is easy to verify that ψ and ψ_1 are positive order σ-continuous linear maps and for any increasing net $\{f_\alpha\} \subset C(S)$, with $\sup f_\alpha = f \in B(S)$, $\psi(f) = \sup \psi(f_\alpha)$, \sup being taken in the boundedly complete vector lattice $C(S)$ [2] (these maps are called Loomis-Sikorski maps [5]).

Throughout the paper any E-valued measure μ on any σ-algebra is required

Received by the editors July 7, 1975 and, in revised form, April 28, 1976.

Key words and phrases. τ-smooth measures, tight measures, weakly σ-distributive lattices, monotone order σ-continuous, order σ-continuous, monotone order σ-closed, order σ-closed.
to be nonnegative and σ-additive with respect to the order of E, i.e., whenever \(\{F_n\}, 1 \leq n < \infty \), is a monotone sequence in the σ-algebra then $\mu(\bigcup_{n=1}^{\infty} F_n) = \sqrt{\sum_{n=1}^{\infty} \mu(F_n)}$. Integration with respect to these measures is taken in the sense of [4], [5]. Throughout this paper $\phi: C_b(T) \to E$ is assumed to be a given positive linear map, T being a Hausdorff completely regular space, and E a boundedly monotone complete vector lattice assumed to be over the field of real numbers. Denoting by X the Stone-Čech compactification of T, we get a positive linear map $\overline{\phi}: C(X) \to E$, $\overline{\phi}(f) = \phi(f|_T)$, which is represented by a quasi-regular Borel measure $\overline{\mu}$ on X, by the

Proposition 1 (Wright [4], [5]). Given a positive linear map $\phi: C_b(T) \to E$, there exists a unique quasi-regular E-valued Borel measure $\overline{\mu}$ on X such that

$$\phi(f|_X) = \int f d\overline{\mu}, \text{ for all } f \in C(X).$$

Proof. This theorem is proved in [5]. By quasi-regularity we mean that for any open subset V of X, $\overline{\mu}(V) = \sup\{ \mu(C): C \text{ compact}, C \subseteq V \}$.

To get a measure on T we first note the following result.

Lemma 2. (i) $\mathfrak{B}_0(T) = \{ E \cap T: E \in \mathfrak{B}_0(X) \}$.

(ii) $\mathfrak{B}(T) = \{ E \cap T: E \in \mathfrak{B}(X) \}$.

Proof is similar to Lemma C [6].

Corollary 3. There is a unique E-valued Baire measure μ on X which represents ϕ, i.e.,

$$\phi(f) = \int f d\mu, \text{ for all } f \in C_b(T),$$

if and only if $\overline{\mu}(A) = 0$ for any $A = \mathfrak{B}_0(X)$ with $A \cap T = \emptyset$.

Proof. If $\overline{\mu}(A) = 0, \forall A \in \mathfrak{B}_0(X)$, with $A \cap T = \emptyset$, then defining $\mu(P) = \overline{\mu}(P_0)$, where $P_0 \cap T = P$ for a $P_0 \in \mathfrak{B}_0(X)$, for any $P \in \mathfrak{B}_0(T)$, it is easy to see that μ is well defined, is countably additive, and $\int f d\mu = \int f|_X d\mu, \forall f \in C(X)$. Conversely, if there is such a μ, then $\int f d\mu = \int f|_X d\mu, \forall f \in C(X)$. This means $\{ f \in B_0(X): \int f d\mu = \int f|_X d\mu \}$ contains $C(X)$ and is monotone order σ-closed. Thus $\int f d\mu = \int f|_X d\mu, \forall f \in \mathfrak{B}_0(X)$, and so the result follows (cf. [6, Theorem E]).

For each positive e in E, let

$$E[e] = \{ a \in E: \exists \lambda > 0 \text{ such that } -\lambda e < a < \lambda e \}.$$

Thus $E[e]$ is an order-unit space and can be equipped with the order-unit norm. Since ϕ and $\overline{\mu}$ take their values in $E (\phi(1))$ there is no loss of generality in supposing E is an order-unit space with order unit $e = \phi(1)$. Let E be equipped with order-unit norm.
Proposition 4. A sufficient condition for the existence of a unique E-valued Baire measure μ on T which represents φ is that there exists a weakly σ-distributive [6], boundedly σ-complete vector lattice W such that E can be embedded (without alternation of suprema) in W and, whenever $\{f_n\}$ is a monotonic decreasing sequence in $C_b(T)$ with pointwise infimum 0, then $\bigwedge_{n=1}^{\infty} \varphi(f_n) = 0$.

Proof. In this case, $\tilde{\mu}: B_0(X) \to E$ is regular [6]. The given condition gives $\tilde{\mu}(Z) = 0$ for any zero set Z of X, $Z \cap T = \emptyset$ (by zero-set we mean $f^{-1}\{0\}$, for some $f \in C(X)$). By regularity $\mu(P) = 0$ for any $P \in B_0(X)$, $P \cap T = \emptyset$. Corollary 3 now gives the result.

Proposition 5. A sufficient condition for the existence of a unique E-valued Baire measure μ on T which represents φ is that whenever $\{f_n\}$ is a monotone decreasing sequence in $C_b(T)$ which pointwise converges to 0 then $\|\varphi(f_n)\| \to 0$.

Proof. Proceeding as in [2] we see that $\tilde{\varphi}(C(X))$ is embedded, as an ordered vector space, in $C(S)$ for some Stonean compact Hausdorff space S, preserving arbitrary suprema and infima and $\tilde{\varphi}(1)$ being the constant function 1 in $C(S)$ (this can also be done by taking MacNeille-Dedekind completion of E [4], [9]). This gives us a positive linear map $\varphi: C_b(T) \to C(S) \subset B_0(S)$, with pointwise order in $B_0(S)$. Since $B_0(S)$ is trivially weakly σ-distributive, it follows from [8, Theorem 3.4] that φ extends to a linear, positive, monotone order σ-continuous map $\varphi: B_0(T) \to B_0(S)$. Since $(\psi_1 \circ \varphi)^{-1}(E)$ is monotone order σ-closed and contains the lattice $C_b(T)$, we get $(\psi_1 \circ \varphi)^{-1}(E) = B_0(T)$. Defining $\mu = \psi_1 \circ \varphi|_{B_0(T)}$ we get the desired Baire measure. The uniqueness is easy to verify.

Remark. It is enough to assume in Proposition 4 and 5 that E is boundedly monotone order σ-complete.

Definition. (a) An E-valued measure $\mu: B(T) \to E$ is said to be τ-smooth if, whenever $\{U_n\}$ is an increasing net of open sets, $\mu(\bigcup U_n) = \bigvee \mu(U_n)$.

(b) An E-valued measure $\mu: B(T) \to E$ is said to be tight if for any open set U, $\mu(U) = \bigvee \{ \mu(C): C \text{ compact, } C \subseteq U \}$.

We list some properties of these measures.

Proposition 6. (i) If μ is τ-smooth then for any decreasing net $\{g_a\}$ of bounded, upper semicontinuous, real-valued functions with pointwise inf $g_a = g \in B(X_0)$, $\int g d\mu = \bigwedge a \int g_a d\mu$; also for an open set V, in T, $\mu(V) = \bigvee \{ \mu(P): P \subseteq V, P \text{ closed in } T \}$.

(ii) If μ is tight, then the following statements hold:

(a) μ is τ-smooth.

(b) If a net $\{f_n\}$, in $B(T)$, converges to $f \in B(T)$, uniformly on compact
subsets of T, $\|f_n\| < 1$, $\forall \alpha$, and E is a boundedly complete vector lattice, then $\int f_n d\mu \to 0$ (order convergence).

(c) If V_1 and V_2 are open subsets of T, then $\mu(V_1 \setminus V_2) = \sqrt{\mu(C)}: C$ compact, $C \subset V_1 \setminus V_2$.

(d) For a bounded, nonnegative, lower semicontinuous function f on T, $\int f d\mu = \sqrt{\{ g \mu: 0 \leq g \leq f, g$ simple and a combination of characteristic functions of disjoint compact subsets of $T\}.$

Proof. (i) This follows by using the inequality

$$\frac{1}{n} \sum_{i=1}^{n} \mu \left(\left\{ x \in T: f(x) > \frac{i}{n} \right\} \right) \leq \int f d\mu \leq \frac{1}{n} \mu(T) + \frac{1}{n} \sum_{i=1}^{n} \mu \left(\left\{ x \in T: f(x) > \frac{i}{n} \right\} \right),$$

valid for any $n > 1$ and for any measurable f, $0 < f < 1$. The regularity property follows from the fact that every point of T has a nbd. base consisting of closed sets.

(ii) (a) is trivially obvious. To prove (b), we have, for any compact subset C of T,

$$\int f d\mu = \int_C f d\mu + \int_{T \setminus C} f d\mu \leq \lim \int_C f_n d\mu + \mu(T \setminus C)$$

$$= \lim \left(\int_C f_n d\mu - \int_{T \setminus C} f_n d\mu \right) + \mu(T \setminus C)$$

$$\leq \lim \int f_n d\mu + 2\mu(T \setminus C).$$

In a similar way we get $\int f d\mu > \liminf \int f_n d\mu - 2\mu(T \setminus C)$, from which the result follows. Proof of (c) is straightforward. To prove (d), assume $0 < f < 1$, fix a positive integer n and let $V_i = \{ x \in T: f(x) > i/n \}, 0 < i < n$. V_i's are open and

$$\sum_{i=1}^{n} \frac{i-1}{n} \chi_{V_{i-1}\setminus V_i} < f \leq \sum_{i=1}^{n} \frac{i}{n} \chi_{V_{i-1}\setminus V_i}.$$

Using (c) and the fact

$$\int \left(\sum_{i=1}^{n} \frac{i}{n} \chi_{V_{i-1}\setminus V_i} - \sum_{i=1}^{n} \frac{i-1}{n} \chi_{V_{i-1}\setminus V_i} \right) d\mu = \frac{1}{n} \mu(V_0) = \frac{1}{n} \mu(T)$$

we get the result.

Corollary 7. There exists an E-valued τ-smooth measure μ on T which represents φ, if and only if $\mu(P) = 0$, for each Borel set $P \in \mathcal{B}(X)$, $P \cap T = \emptyset$.
Proof. If \(\tilde{\mu}(P) = 0 \) for any \(P \in \mathfrak{B}(X) \), \(P \cap T = \emptyset \), we define \(\mu(Q) = \tilde{\mu}(Q) \) for any \(Q \in \mathfrak{B}(T) \), \(\tilde{\mu} \) being in \(\mathfrak{B}(X) \) such that \(Q \cap T = Q \). It is easily verified that \(\mu \) is well defined and is countably additive. Also, since \(\tilde{\mu} \) is \(\tau \)-smooth and \(\tilde{\mu}(P) = 0 \), \(\forall P \in \mathfrak{B}(X) \), \(P \cap T = \emptyset \), it easily follows that \(\mu \) is \(\tau \)-smooth. Further, \(\int f d\tilde{\mu} = \int f|_X d\mu \), \(\forall f \in C(X) \). Conversely, if there is such a \(\mu \), then

\[
\int f d\tilde{\mu} = \int f|_X d\mu, \forall f \in C(X).
\]

This means \(H = \{ f \in B(X) : \int f d\tilde{\mu} = \int f|_X d\mu \} \) is a monotone order \(\sigma \)-closed subspace of \(B(X) \) and contains all bounded upper semicontinuous on \(X \) (using Proposition 6). Since the subspace, of \(B(X) \), generated by upper semicontinuous functions on \(X \) is a vector sublattice of \(B(X) \) (simple verification) we have \(H = B(X) \) and so the result follows (cf. Corollary 3).

Proposition 8. A sufficient condition for the existence of a unique \(\tau \)-smooth \(E \)-valued Borel measure \(\mu \) on \(T \) which represents \(\varphi \) is that

(i) whenever \(\{ f_\alpha \} \) is a decreasing net in \(C_b(T) \) with \(\inf f_\alpha = 0 \) (pointwise order) than \(\wedge \varphi(f_\alpha) = 0 \), and

(ii) \(E \) is embedded, as an ordered vector space, in a weakly \((\sigma, \infty) \)-distributive vector lattice \([7]\), preserving arbitrary suprema and infima.

Proof. Idea of proof is same as Proposition 4. The measure \(\tilde{\mu} : \mathfrak{B}(X) \rightarrow E \) is regular in this case. Proceeding as in Proposition 4 and using Corollary 7, we get the result.

Proposition 9. A sufficient condition for the existence of a unique \(\tau \)-smooth \(E \)-valued Borel measure \(\mu \) on \(T \) which represents \(\varphi \) is that whenever \(\{ f_\alpha \} \) is a decreasing net in \(C_b(T) \) with \(\inf f_\alpha = 0 \) (pointwise order), then \(\| \varphi(f_\alpha) \| \rightarrow 0 \).

Proof. As in Proposition 5, \(\tilde{\varphi}(C(X)) \) can be considered embedded, as an ordered vector space, in \(C(S) \) for a Stonian compact Hausdorff space \(S \), preserving arbitrary suprema and infima. This gives us a positive linear map \(\varphi : C_b(T) \rightarrow C(S) \subset B_1(S) \), \(B_1(S) \) being all bounded real-valued functions on \(S \) with pointwise order. Since \(B_1(S) \) is boundedly complete and weakly \((\sigma, \infty) \)-distributive, using Proposition 8, we get a \(\tau \)-smooth \(B_1(S) \)-valued measure \(\mu_0 \) on \(T \) representing \(\varphi \). Now \(H = \{ f \in B(T) : \int f d\mu_0 \in B(S) \} \) is a monotone order \(\sigma \)-closed subspace on \(T \) and so \(H = B(T) \) (same argument as in Corollary 7). The required measure is \(\mu = \psi \circ \mu_0 \mid \mathfrak{B}(T) \). To prove it is \(E \)-valued let \(H_1 = \{ f \in B(T) : \int f d\mu \in E \} \). Then \(H_1 \) is a monotonic order \(\sigma \)-closed subspace of \(B(T) \) and contains upper semicontinuous bounded functions on \(T \). Arguing as in Corollary 7, we prove \(H_1 = B(T) \). This proves \(\mu \) is \(E \)-valued. Uniqueness is easily verified.
Proposition 10. A necessary and sufficient condition for \(\varphi \) being representable by a unique tight Borel measure \(\mu \) on \(T \) is that \(\varphi(1) = \mu(X) = \sqrt{\{ \mu(C) : C \text{ compact, } C \subset T \}} \). If \(E \) is a boundedly complete vector lattice then this will happen if and only if for any uniformly bounded net \(\{ f_\alpha \} \subset C_b(T) \) such that \(f_\alpha \to 0 \) uniformly on compact subsets of \(X_0 \), \(\varphi(f_\alpha) \to 0 \) in \(E \) (order convergence).

Proof. First suppose that the condition is satisfied. Let \(B \) be any Borel subset of \(X \) disjoint from \(T \) and let \(C \) be any compact subset of \(T \). Then \(\mu(X) \geq \mu(B \cup C) = \mu(B) + \mu(C) \). Thus \(\mu(B) = 0 \) and so by Corollary 7 there exists a well-defined \(\tau \)-smooth \(E \)-valued Borel measure \(\mu \) on \(T \) with \(\mu(B) = \mu(B \cap T) \), \(\forall B \in \mathcal{B}(X) \). In particular, \(\mu(C) = \mu(C) \) for any compact \(C \subset T \). If \(P \) is a closed subset of \(X \), then for any compact \(C \subset T \), we have

\[
\mu(P \setminus P \cap C) = \mu(P \setminus C) < \mu(T \setminus C) < \mu(X \setminus C) = \mu(X) - \mu(C),
\]

and so \(\mu(P) > \sqrt{\{ \mu(P \cap C) : C \text{ compact in } T \}} \). Now for any open set \(U \) in \(T \), \(\mu(U) = \sqrt{\{ \mu(P) : P \subset U, P \text{ closed in } X \}} \) (Proposition 6). Hence \(\mu \) is tight. Converse and uniqueness are easy to verify. Let \(E \) be a boundedly complete vector lattice and suppose that \(\varphi \) satisfies the hypothesis. We define a partial order on \(I = \{(C, \alpha) : C \text{ a compact subset of } T \text{ and } \alpha \text{ a finite subset of } T \setminus C \}, (C_2, \alpha_2) \geq (C_1, \alpha_1) \text{ if } C_2 \supset C_1 \text{ and } \alpha_2 \supset \alpha_1 \setminus C_2 \). \(I \) becomes a directed set. Define \(\forall (C, \alpha) \in I, f_{C, \alpha} \in C(X), 0 < f_{C, \alpha} < 1,
\]

\[
f_{C, \alpha} = \begin{cases} 0, & \text{on } \alpha, \\ 1, & \text{on } C. \\ \end{cases}
\]

Evidently \(f_{C, \alpha} \rightharpoonup 1 \) uniformly on compact subsets of \(T \) and so \(\mu(f_{C, \alpha}) \to \mu(1) \) (order convergence) in \(E \). For a \((C_0, \alpha_0) \in I \), \(\inf \{ \mu(f_{C, \alpha}) : (C, \alpha) \geq (C_0, \alpha_0) \} \) is the infimum of \(\{ \mu(C) : C \text{ compact, } C \subset T \} \). The converse is straightforward.

Remark. The second characterization of Proposition 10 is the definition of the tight functional given in [3].

Using similar methods we have the following sufficient condition for the measure extension to hold in any boundedly \(\sigma \)-complete vector lattice.

Proposition 11. Let \(\mathcal{S} \) be an algebra of subsets of a set \(Y \), \(\mathcal{S}^\sigma \) the \(\sigma \)-algebra generated by \(\mathcal{S} \), and \(E \) a boundedly monotone \(\sigma \)-complete partially ordered vector space. Let \(q: \mathcal{S} \to E \) be a positive, finitely additive set function such that whenever \(\{ A_n \} \) is a monotone decreasing sequence in \(\mathcal{S} \) with \(\cap_{n=1}^\infty A_n = \emptyset \), then \(\| q(A_n) \| \to 0 \). Then there exists a countably additive \(E \)-valued measure \(q^\sigma \) on \(\mathcal{S}^\sigma \) which extends \(q \).

Proof. As in Proposition 5, we can consider \(q(\mathcal{S}) \subset C(S) \subset B_0(S) \), for some Stonian compact Hausdorff space \(S \). With pointwise order on \(B_0(S) \), it is weakly \(\sigma \)-distributive and so we have a countably additive measure \(\mu: \mathcal{S}^\sigma \to \).
The desired measure is \(q^\sigma = \psi_1 \circ \mu \). It is easy to verify that \(q^\sigma \) is \(E \)-valued.

I am very grateful to the referee for making many useful suggestions which simplified some proofs.

References

Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242