Lattice-valued Borel measures. II
HTML articles powered by AMS MathViewer
- by Surjit Singh Khurana
- Trans. Amer. Math. Soc. 235 (1978), 205-211
- DOI: https://doi.org/10.1090/S0002-9947-1978-0460590-2
- PDF | Request permission
Abstract:
Let T be a completely regular Hausdorff space, ${C_b}(T)$ the set of all bounded real-valued continuous functions on T, E a boundedly monotone complete ordered vector space, and $\varphi :{C_b}(T) \to E$ a positive linear map. It is proved that under certain conditions there exist $\sigma$-additive, $\tau$-smooth or tight E-valued measures on T which represent $\varphi$.References
- Samuel Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70–90. MR 90774, DOI 10.1090/S0002-9947-1957-0090774-3
- S. S. Khurana, Lattice-valued Borel measures, Rocky Mountain J. Math. 6 (1976), no. 2, 377–382. MR 399409, DOI 10.1216/RMJ-1976-6-2-377
- V. S. Varadarajan, Measures on topological spaces, Mat. Sb. (N.S.) 55 (97) (1961), 35–100 (Russian). MR 0148838
- J. D. Maitland Wright, Stone-algebra-valued measures and integrals, Proc. London Math. Soc. (3) 19 (1969), 107–122. MR 240276, DOI 10.1112/plms/s3-19.1.107
- J. D. Maitland Wright, Measures with values in a partially ordered vector space, Proc. London Math. Soc. (3) 25 (1972), 675–688. MR 344413, DOI 10.1112/plms/s3-25.4.675
- J. D. Maitland Wright, The measure extension problem for vector lattices, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 4, 65–85 (English, with French summary). MR 330411
- J. D. Maitland Wright, An algebraic characterization of vector lattices with the Borel regularity property, J. London Math. Soc. (2) 7 (1973), 277–285. MR 333116, DOI 10.1112/jlms/s2-7.2.277
- J. D. Maitland Wright, An extension theorem, J. London Math. Soc. (2) 7 (1974), 531–539. MR 344414, DOI 10.1112/jlms/s2-7.3.531
- J. D. Maitland Wright, Embeddings in vector lattices, J. London Math. Soc. (2) 8 (1974), 699–706. MR 352953, DOI 10.1112/jlms/s2-8.4.699
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 235 (1978), 205-211
- MSC: Primary 28A55
- DOI: https://doi.org/10.1090/S0002-9947-1978-0460590-2
- MathSciNet review: 0460590