Topological entropy at an $u$-explosion
HTML articles powered by AMS MathViewer
- by Louis Block
- Trans. Amer. Math. Soc. 235 (1978), 323-330
- DOI: https://doi.org/10.1090/S0002-9947-1978-0461578-8
- PDF | Request permission
Abstract:
In this paper an example is given of a ${C^2}$ map g from the circle onto itself, which permits an $\Omega$-explosion. It is shown that topological entropy (considered as a map from ${C^2}({S^1},{S^1})$ to the nonnegative real numbers) is continuous at g.References
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106, DOI 10.1090/S0002-9947-1965-0175106-9
- Louis Block, An example where topological entropy is continuous, Trans. Amer. Math. Soc. 231 (1977), no. 1, 201–213. MR 461582, DOI 10.1090/S0002-9947-1977-0461582-9
- Louis Block, Noncontinuity of topological entropy of maps of the Cantor set and of the interval, Proc. Amer. Math. Soc. 50 (1975), 388–393. MR 367953, DOI 10.1090/S0002-9939-1975-0367953-7
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- Rufus Bowen, Topological entropy and axiom $\textrm {A}$, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 23–41. MR 0262459
- M. Misiurewicz, On non-continuity of topological entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 319–320 (English, with Russian summary). MR 287578
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 235 (1978), 323-330
- MSC: Primary 58F10; Secondary 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0461578-8
- MathSciNet review: 0461578