Norbert Wiener’s ergodic theorem for convex regions
HTML articles powered by AMS MathViewer
- by Norberto A. Fava and Jorge H. Nanclares
- Trans. Amer. Math. Soc. 235 (1978), 403-406
- DOI: https://doi.org/10.1090/S0002-9947-1978-0463399-9
- PDF | Request permission
Abstract:
It is proved that the geometric hypothesis of a theorem which generalizes Norbert Wiener’s multiparameter ergodic theorem are satsified in the case of arbitrary convex regions, provided only that they form a substantial family as defined in the introduction.References
- H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958. MR 0124813
- Norberto Angel Fava, $k$-parameter semigroups of measure-preserving transformations, Trans. Amer. Math. Soc. 177 (1973), 345–352. MR 318448, DOI 10.1090/S0002-9947-1973-0318448-0
- Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1–18. MR 1546100, DOI 10.1215/S0012-7094-39-00501-6
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 235 (1978), 403-406
- MSC: Primary 28A65
- DOI: https://doi.org/10.1090/S0002-9947-1978-0463399-9
- MathSciNet review: 0463399