Bases for the positive cone of a partially ordered module
HTML articles powered by AMS MathViewer
- by W. Russell Belding
- Trans. Amer. Math. Soc. 235 (1978), 305-313
- DOI: https://doi.org/10.1090/S0002-9947-1978-0472640-8
- PDF | Request permission
Abstract:
$(R,{R^ + })$ is a partially ordered ring and $(M,{M^ + })$ is a strict $(R,{R^ + })$-module. So M is a left R-module and $({R^ + }\backslash \{ 0\} )({M^ + }\backslash \{ 0\} ) \subseteq {M^ + }\backslash \{ 0\}$. Let $\leqslant ’$ be the order induced on M by ${M^ + }.B \subseteq {M^ + }$ is an ${R^ + }$-basis for ${M^ + }$ means ${R^ + }B = {M^ + }$ (spanning) and if r is in R, b in B with $0 < ’rb \leqslant ’b$ then $rb \notin {R^ + }(B\backslash \{ b\} )$ (independence). Result: If B and D are ${R^ + }$-bases for ${M^ + }$ then card $B =$ card D and to within a permutation ${b_i} = {u_i}{d_i}$, for units ${u_i}$ of ${R^ + }$.References
- M. N. Bleicher and E. Marczewski, Remarks on dependence relations and closure operators, Colloq. Math. 9 (1962), 209–212. MR 142489, DOI 10.4064/cm-9-2-209-212
- Michael N. Bleicher and Hans Schneider, The decomposition of cones in modules over ordered rings, J. Algebra 1 (1964), 233–258. MR 168606, DOI 10.1016/0021-8693(64)90021-3
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864
- G. A. Heuer, Discrete ordered rings, Fund. Math. 85 (1974), no. 2, 121–138. MR 344175, DOI 10.4064/fm-85-2-121-138
- Nathan Jacobson, Lectures in abstract algebra. Vol. II. Linear algebra, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0053905
- P. Ribenboim, On ordered modules, J. Reine Angew. Math. 225 (1967), 120–146. MR 206052, DOI 10.1515/crll.1967.225.120
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 235 (1978), 305-313
- MSC: Primary 06A75
- DOI: https://doi.org/10.1090/S0002-9947-1978-0472640-8
- MathSciNet review: 0472640