Galois groups and complex multiplication
HTML articles powered by AMS MathViewer
- by Michael Fried PDF
- Trans. Amer. Math. Soc. 235 (1978), 141-163 Request permission
Abstract:
The Schur problem for rational functions is linked to the theory of complex multiplication and thereby solved. These considerations are viewed as a special case of a general problem, prosaically labeled the extension of constants problem. The relation between this paper and a letter of J. Herbrand to E. Noether (published posthumously) is speculatively summarized in a conjecture that may be regarded as an arithmetic version of Riemann’s existence theorem.References
-
W. Burnside, On simply transitive groups of prime degree, Quart. J. Math. 37 (1906), 215-222.
A. Clebsch, Zür Theorie der Riemannshen Fläche, Math. Ann. 6 (1872), 216-230.
- M. Fried, Fields of definition of function fields and Hurwitz families—groups as Galois groups, Comm. Algebra 5 (1977), no. 1, 17–82. MR 453746, DOI 10.1080/00927877708822158 —, General moduli problems with application to the stable existence of Hurwitz families (preprint).
- Michael Fried, On Hilbert’s irreducibility theorem, J. Number Theory 6 (1974), 211–231. MR 349624, DOI 10.1016/0022-314X(74)90015-8
- Michael Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41–55. MR 257033 —, Arithmetical properties of function fields. II, Acta Arith. 25 (1974), 225-258.
- William Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542–575. MR 260752, DOI 10.2307/1970748 A. Grothendieck, Géométrie formelle et géométrie algébrique, Séminaire Bourbaki, 11 ième annee: 1958/59, Fasc. 3, Exposé 182, Secrétariat Mathématique, Paris, 1959. MR 28 #1091.
- Jacques Herbrand, Zur Theorie der algebraischen Funktionen, Math. Ann. 106 (1932), no. 1, 502 (German). MR 1512770, DOI 10.1007/BF01455898
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, Ont., 1962. MR 0201608
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469
- Serge Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, No. 11, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0142550 D. Mumford, Introduction to algebraic geometry. Harvard Univ. Notes, 1966.
- A. P. Ogg, Rational points of finite order on elliptic curves, Invent. Math. 12 (1971), 105–111. MR 291084, DOI 10.1007/BF01404654
- J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), no. 3, 399–448. MR 1501252, DOI 10.1090/S0002-9947-1923-1501252-3 I. Schur, Über den Zusammenhang Zwischen einem Problem der Zahlentheorie and einem Satz über algebraische Functionen, S. B. Preuss. Akad. Wiss. Phys.-Math. Kl. (1923), 123-134.
- Goro Shimura and Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, vol. 6, Mathematical Society of Japan, Tokyo, 1961. MR 0125113
- George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. MR 0092855
- H. P. F. Swinnerton-Dyer, Applications of algebraic geometry to number theory, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 1–52. MR 0337951
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 235 (1978), 141-163
- MSC: Primary 14H30; Secondary 14H25
- DOI: https://doi.org/10.1090/S0002-9947-1978-0472917-6
- MathSciNet review: 472917