Real structure in complex $L_{1}$-preduals
HTML articles powered by AMS MathViewer
- by Daniel E. Wulbert
- Trans. Amer. Math. Soc. 235 (1978), 165-181
- DOI: https://doi.org/10.1090/S0002-9947-1978-0472918-8
- PDF | Request permission
Abstract:
Call a complex Banach space selfadjoint if it is isometrically isomorphic to a selfadjoint subspace of a $C(X,{\mathbf {C}})$-space. B. Hirsberg and A. Lazar proved that if the unit ball of a complex Lindenstrauss space, E, has an extreme point, then E is selfadjoint. Here we will give a characterization of selfadjoint Lindenstrauss spaces, and construct a nonselfadjoint complex Lindenstrauss space.References
- Erik M. Alfsen and Edward G. Effros, Structure in real Banach spaces. I, II, Ann. of Math. (2) 96 (1972), 98–128; ibid. (2) 96 (1972), 129–173. MR 352946, DOI 10.2307/1970895
- Y. Benyamini and J. Lindenstrauss, A predual of $l_{1}$ which is not isomorphic to a $C(K)$ space, Israel J. Math. 13 (1972), 246–254 (1973). MR 331013, DOI 10.1007/BF02762798
- Errett Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math. 11 (1961), 777–783. MR 133676
- Jean Dieudonné, Sur les espaces $L^{1}$, Arch. Math. 10 (1959), 151–152 (French). MR 105016, DOI 10.1007/BF01240778
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Edward G. Effros, Structure in simplexes, Acta Math. 117 (1967), 103–121. MR 203435, DOI 10.1007/BF02395042
- Edward G. Effros, On a class of complex Banach spaces, Illinois J. Math. 18 (1974), 48–59. MR 328548
- Hicham Fakhoury, Préduaux de $L$-espace: Notion de centre, J. Functional Analysis 9 (1972), 189–207 (French). MR 0303260, DOI 10.1016/0022-1236(72)90010-9
- A. Grothendieck, Une caractérisation vectorielle-métrique des espaces $L^1$, Canadian J. Math. 7 (1955), 552–561 (French). MR 76301, DOI 10.4153/CJM-1955-060-6
- B. Hirsberg and A. J. Lazar, Complex Lindenstrauss spaces with extreme points, Trans. Amer. Math. Soc. 186 (1973), 141–150. MR 333671, DOI 10.1090/S0002-9947-1973-0333671-7
- Shizuo Kakutani, Concrete representation of abstract $(M)$-spaces. (A characterization of the space of continuous functions.), Ann. of Math. (2) 42 (1941), 994–1024. MR 5778, DOI 10.2307/1968778
- Shizuo Kakutani, Concrete representation of abstract $(L)$-spaces and the mean ergodic theorem, Ann. of Math. (2) 42 (1941), 523–537. MR 4095, DOI 10.2307/1968915
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- A. J. Lazar and J. Lindenstrauss, On Banach spaces whose duals are $L_{1}$ spaces, Israel J. Math. 4 (1966), 205–207. MR 206670, DOI 10.1007/BF02760079
- A. J. Lazar, The unit ball in conjugate $L_{1}$ spaces, Duke Math. J. 39 (1972), 1–8. MR 303242
- A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are $L_{1}$ spaces and their representing matrices, Acta Math. 126 (1971), 165–193. MR 291771, DOI 10.1007/BF02392030
- D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to $l_{1}(\Gamma )$, J. Functional Analysis 12 (1973), 177–187. MR 0342987, DOI 10.1016/0022-1236(73)90022-0
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 112. MR 179580
- Joram Lindenstrauss and Daniel E. Wulbert, On the classification of the Banach spaces whose duals are $L_{1}$ spaces, J. Functional Analysis 4 (1969), 332–349. MR 0250033, DOI 10.1016/0022-1236(69)90003-2
- Asvald Lima, Complex Banach spaces whose duals are $L_{1}$-spaces, Israel J. Math. 24 (1976), no. 1, 59–72. MR 425584, DOI 10.1007/BF02761429
- E. Michael and A. Pełczyński, Peaked partition subspaces of $C(X)$, Illinois J. Math. 11 (1967), 555–562. MR 217581
- E. Michael and A. Pełczyński, Separable Banach spaces which admit $l_{n}{}^{\infty }$ approximations, Israel J. Math. 4 (1966), 189–198. MR 211247, DOI 10.1007/BF02760077 N.J. Nielsen and G.H. Olsen, Complex preduals of ${L_1}$ and subspaces of $l_\infty ^n(C)$, Mat. Inst. Univ. Oslo (preprint).
- Gunner Hans Olsen, On the classification of complex Lindenstrauss-spaces, Mathematics Preprint Series, No. 16 (1973), Universitetet i Oslo, Matematisk Institutt, Oslo, 1973. MR 0394128
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Christian Samuel, Sur certains espaces $C_{\sigma }(S)$ et sur les sous-espaces complémentés de $C(S)$, Bull. Sci. Math. (2) 95 (1971), 65–82 (French). MR 285898
- C. Stegall, Banach spaces whose duals contain $l_{1}(\Gamma )$ with applications to the study of dual $L_{1}(\mu )$ spaces, Trans. Amer. Math. Soc. 176 (1973), 463–477. MR 315404, DOI 10.1090/S0002-9947-1973-0315404-3
- Daniel E. Wulbert, Convergence of operators and Korovkin’s theorem, J. Approximation Theory 1 (1968), 381–390. MR 235370, DOI 10.1016/0021-9045(68)90016-6
- M. Zippin, On some subspaces of Banach spaces whose duals are $L_{1}$ spaces, Proc. Amer. Math. Soc. 23 (1969), 378–385. MR 246094, DOI 10.1090/S0002-9939-1969-0246094-0
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 235 (1978), 165-181
- MSC: Primary 46B25
- DOI: https://doi.org/10.1090/S0002-9947-1978-0472918-8
- MathSciNet review: 472918