$L_{\infty }{}_{\lambda }$-equivalence, isomorphism and potential isomorphism
HTML articles powered by AMS MathViewer
- by Mark Nadel and Jonathan Stavi PDF
- Trans. Amer. Math. Soc. 236 (1978), 51-74 Request permission
Abstract:
It is well known that two structures are ${L_{\infty \omega }}$-equivalent iff they are potentially isomorphic [that is, isomorphic in some (Cohen) extension of the universe]. We prove that no characterization of ${L_{\infty \lambda }}$-equivalence along these lines is possible (at least for successor cardinals $\lambda$) and the potential-isomorphism relation that naturally comes to mind in connection with ${L_{\infty \lambda }}$ is often not even transitive and never characterizes ${ \equiv _{\infty \lambda }}$ for $\lambda > \omega$. A major part of the work is the construction of ${\kappa ^ + }$-like linear orderings (also Boolean algebras) A, B such that ${N_{{\kappa ^ + }}}({\mathbf {A}},{\mathbf {B}})$, where ${N_\lambda }({\mathbf {A}},{\mathbf {B}})$ means: A and B are nonisomorphic ${L_{\infty \lambda }}$-equivalent structures of cardinality $\lambda$.References
- K. Jon Barwise, Absolute logics and $L_{\infty \omega }$, Ann. Math. Logic 4 (1972), 309β340. MR 337483, DOI 10.1016/0003-4843(72)90002-2
- Jon Barwise, Back and forth through infinitary logic, Studies in model theory, MAA Studies in Math., Vol. 8, Math. Assoc. Amer., Buffalo, N.Y., 1973, pp.Β 5β34. MR 0342370
- K. Jon Barwise, Axioms for abstract model theory, Ann. Math. Logic 7 (1974), 221β265. MR 376337, DOI 10.1016/0003-4843(74)90016-3
- M. Benda, Reduced products and nonstandard logics, J. Symbolic Logic 34 (1969), 424β436. MR 250860, DOI 10.2307/2270907
- J. E. Baumgartner, L. A. Harrington, and E. M. Kleinberg, Adding a closed unbounded set, J. Symbolic Logic 41 (1976), no.Β 2, 481β482. MR 434818, DOI 10.2307/2272248
- Jon Barwise (ed.), The syntax and semantics of infinitary languages, Lecture Notes in Mathematics, No. 72, Springer-Verlag, Berlin-New York, 1968. MR 0234827 C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973. J. Conway, Ph.D. Thesis, Cambridge, England, 196-.
- Paul C. Eklof, On the existence of $\kappa$-free abelian groups, Proc. Amer. Math. Soc. 47 (1975), 65β72. MR 379694, DOI 10.1090/S0002-9939-1975-0379694-0 J. Gregory and L. Harrington (unpublished).
- Haim Gaifman and E. P. Specker, Isomorphism types of trees, Proc. Amer. Math. Soc. 15 (1964), 1β7. MR 168484, DOI 10.1090/S0002-9939-1964-0168484-2
- Jaakko Hintikka and Veikko Rantala, A new approach to infinitary languages, Ann. Math. Logic 10 (1976), no.Β 1, 95β115. MR 439576, DOI 10.1016/0003-4843(76)90026-7
- John E. Hutchinson, Model theory via set theory, Israel J. Math. 24 (1976), no.Β 3-4, 286β304. MR 437336, DOI 10.1007/BF02834760
- Thomas J. Jech, Lectures in set theory, with particular emphasis on the method of forcing, Lecture Notes in Mathematics, Vol. 217, Springer-Verlag, Berlin-New York, 1971. MR 0321738, DOI 10.1007/BFb0061131 β, The axiom of choice, North-Holland, Amsterdam, 1973.
- R. BjΓΆrn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229β308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0
- Jon Barwise (ed.), The syntax and semantics of infinitary languages, Lecture Notes in Mathematics, No. 72, Springer-Verlag, Berlin-New York, 1968. MR 0234827 A Mekler, Ph.D. Thesis, Stanford Univ., Calif., 1976.
- J. A. Makowsky, Saharon Shelah, and Jonathan Stavi, $\Delta$-logics and generalized quantifiers, Ann. Math. Logic 10 (1976), no.Β 2, 155β192. MR 457146, DOI 10.1016/0003-4843(76)90021-8 M. Nadel, Model theory in admissible sets, Ph.D. Thesis, Univ. of Wisconsin, 1971.
- Mark Nadel, Scott sentences and admissible sets, Ann. Math. Logic 7 (1974), 267β294. MR 384471, DOI 10.1016/0003-4843(74)90017-5 M. Nadel and J. Stavi, ${L_{\infty \lambda }}$-equivalence, isomorphism and potential isomorphism of structures, Notices Amer. Math. Soc. 22 (1975), p. A-644. Abstract #75T-E59. J. B. Paris, Solution to a problem of Max Dickman (to appear).
- Gerald E. Sacks, Saturated model theory, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1972. MR 0398817
- J. R. Shoenfield, Unramified forcing, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp.Β 357β381. MR 0280359 J. Stavi, Superstationary sets and their applications (unpublished). β, On ${L_{\infty \lambda }}$-equivalence of Boolean algebra rings and groups, Notices Amer. Math. Soc. 22 (1975), A-714. Abstract 75T-E77. W. W. Tait, Equivalence in ${L_{\infty \lambda }}$ and isomorphism (to appear).
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 236 (1978), 51-74
- MSC: Primary 02H10; Secondary 02K05, 02H13
- DOI: https://doi.org/10.1090/S0002-9947-1978-0462942-3
- MathSciNet review: 0462942