## A nonlinear semigroup for a functional differential equation

HTML articles powered by AMS MathViewer

- by Dennis W. Brewer PDF
- Trans. Amer. Math. Soc.
**236**(1978), 173-191 Request permission

## Abstract:

A representation theorem is obtained for solutions of the nonlinear functional differential equation \begin{equation}\tag {$1$} u’(t) = F({u_t}), t \geqslant 0,\quad u(t) = \phi (t), t \leqslant 0,\end{equation} as a semigroup of nonlinear operators on a space of initial data*X*of “fading memory type.” Equation (1) is studied in the abstract setting of a Banach space

*E*. The nonlinear functional

*F*is a uniformly Lipschitz continuous mapping from

*X*to

*E*. The semigroup is constructed by transforming (1) to an abstract Cauchy problem \begin{equation}\tag {$CP$} w’(t) + Aw(t) = 0,\quad w(0) = \phi ,\end{equation} in the space

*X*and applying a generation theorem of M. Crandall and T. Liggett to the operator

*A*in

*X*. The case when (1) is a nonlinear Volterra integrodifferential equation of infinite delay is given special consideration. The semigroup representation is used to obtain finite difference approximations for solutions of (CP) and to study the continuity of solutions of (1) with respect to perturbations of

*F*and $\phi$.

## References

- Viorel Barbu,
*Integro-differential equations in Hilbert spaces*, An. Şti. Univ. “Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S.)**19**(1973), no. 2, 365–383 (English, with Romanian summary). MR**402443** - Viorel Barbu and Stanley I. Grossman,
*Asymptotic behavior of linear integrodifferential systems*, Trans. Amer. Math. Soc.**173**(1972), 277–288. MR**308712**, DOI 10.1090/S0002-9947-1972-0308712-2
H. Brézis, - H. Brezis and A. Pazy,
*Accretive sets and differential equations in Banach spaces*, Israel J. Math.**8**(1970), 367–383. MR**275243**, DOI 10.1007/BF02798683 - H. Brézis and A. Pazy,
*Convergence and approximation of semigroups of nonlinear operators in Banach spaces*, J. Functional Analysis**9**(1972), 63–74. MR**0293452**, DOI 10.1016/0022-1236(72)90014-6 - Bernard D. Coleman and Victor J. Mizel,
*On the stability of solutions of functional-differential equations*, Arch. Rational Mech. Anal.**30**(1968), 173–196. MR**229933**, DOI 10.1007/BF00253873
M. G. Crandall, - Michael G. Crandall,
*Semigroups of nonlinear transformations in Banach spaces*, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Publ. Math. Res. Center Univ. Wisconsin, No. 27, Academic Press, New York, 1971, pp. 157–179. MR**0470787** - M. G. Crandall and T. M. Liggett,
*Generation of semi-groups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265–298. MR**287357**, DOI 10.2307/2373376 - M. G. Crandall, S.-O. Londen, and J. A. Nohel,
*An abstract nonlinear Volterra integrodifferential equation*, J. Math. Anal. Appl.**64**(1978), no. 3, 701–735. MR**500052**, DOI 10.1016/0022-247X(78)90014-8 - Constantine M. Dafermos,
*An abstract Volterra equation with applications to linear viscoelasticity*, J. Differential Equations**7**(1970), 554–569. MR**259670**, DOI 10.1016/0022-0396(70)90101-4 - Constantine M. Dafermos,
*Asymptotic stability in viscoelasticity*, Arch. Rational Mech. Anal.**37**(1970), 297–308. MR**281400**, DOI 10.1007/BF00251609 - H. Flaschka and M. J. Leitman,
*On semigroups of nonlinear operators and the solution of the functional differential equation $\dot x(t)=F(x_{t})$*, J. Math. Anal. Appl.**49**(1975), 649–658. MR**361959**, DOI 10.1016/0022-247X(75)90204-8 - Jack K. Hale,
*Functional differential equations with infinite delays*, J. Math. Anal. Appl.**48**(1974), 276–283. MR**364813**, DOI 10.1016/0022-247X(74)90233-9
S. O. Londen, - R. K. Miller,
*Linear Volterra integrodifferential equations as semigroups*, Funkcial. Ekvac.**17**(1974), 39–55. MR**350511** - C. C. Travis and G. F. Webb,
*Existence and stability for partial functional differential equations*, Trans. Amer. Math. Soc.**200**(1974), 395–418. MR**382808**, DOI 10.1090/S0002-9947-1974-0382808-3 - G. F. Webb,
*Autonomous nonlinear functional differential equations and nonlinear semigroups*, J. Math. Anal. Appl.**46**(1974), 1–12. MR**348224**, DOI 10.1016/0022-247X(74)90277-7 - G. F. Webb,
*Functional differential equations and nonlinear semigroups in $L^{p}$-spaces*, J. Differential Equations**20**(1976), no. 1, 71–89. MR**390422**, DOI 10.1016/0022-0396(76)90097-8

*Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert*, Math. Studies, No. 5, North-Holland, Amsterdam, 1973. MR

**50**#1060.

*An introduction to evolution governed by accretive operators*, Proc. Internat. Sympos. Dynamical Systems (Brown Univ., Providence, R. I., 1974).

*On a Volterra equation in Banach space*, MRC Tech. Summary Report #1558, Univ. of Wisconsin, Nov. 1975. —,

*Some local existence results on an integral equation in a Banach space*, MRC Tech. Summary Report #1556, Univ. of Wisconsin, Nov. 1975.

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**236**(1978), 173-191 - MSC: Primary 34K05; Secondary 47H99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0466838-2
- MathSciNet review: 0466838