The Riemann hypothesis for Selberg’s zeta-function and the asymptotic behavior of eigenvalues of the Laplace operator
HTML articles powered by AMS MathViewer
- by Burton Randol
- Trans. Amer. Math. Soc. 236 (1978), 209-223
- DOI: https://doi.org/10.1090/S0002-9947-1978-0472728-1
- PDF | Request permission
Abstract:
Much of that part of the theory of the Riemann zeta-function based on the Riemann hypothesis carries over to zeta-functions of Selberg’s type, and in this way one can get asymptotic information about various eigenvalue problems. The methods are illustrated in the case of a compact Riemann surface.References
- P. Bérard, Sur la fonction spectrale du Laplacien d’une variété riemannienne compacte sans point conjugués, C. R. Acad. Sci. Paris 283 (1976), 45-48.
- K. Chandrasekharan, Arithmetical functions, Die Grundlehren der mathematischen Wissenschaften, Band 167, Springer-Verlag, New York-Berlin, 1970. MR 0277490, DOI 10.1007/978-3-642-50026-8
- J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79. MR 405514, DOI 10.1007/BF01405172
- Ramesh Gangolli, Zeta functions of Selberg’s type for compact space forms of symmetric spaces of rank one, Illinois J. Math. 21 (1977), no. 1, 1–41. MR 485702
- Heinz Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II, Math. Ann. 142 (1960/61), 385–398 (German). MR 126549, DOI 10.1007/BF01451031 R. P. Langlands, Lecture notes on the representation theory of ${\text {SL}}(2,R)$ (unpublished).
- H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225–246. MR 473166, DOI 10.1002/cpa.3160250302
- Burton Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974), 996–1000. MR 400316, DOI 10.1090/S0002-9904-1974-13609-8
- Burton Randol, On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc. 233 (1977), 241–247. MR 482582, DOI 10.1090/S0002-9947-1977-0482582-9
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon Press, 1951. MR 0046485 —, The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 236 (1978), 209-223
- MSC: Primary 10H10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0472728-1
- MathSciNet review: 0472728