Homotopy operations under a fixed space
Authors:
D. E. Kruse and J. F. McClendon
Journal:
Trans. Amer. Math. Soc. 237 (1978), 153-174
MSC:
Primary 55E35; Secondary 55G36
DOI:
https://doi.org/10.1090/S0002-9947-1978-0467738-4
MathSciNet review:
0467738
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The problem of classifying extensions of a function up to relative homotopy leads in a natural way to the homotopy operations of the title. The operations, stable and unstable, primary and higher order, are defined and studied. Some specific applications are worked out.
- [1] W. D. Barcus and M. G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57–74. MR 97060, https://doi.org/10.1090/S0002-9947-1958-0097060-7
- [2] M. G. Barratt, I. M. James, and N. Stein, Whitehead products and projective spaces, J. Math. Mech. 9 (1960), 813–819. MR 0116331, https://doi.org/10.1512/iumj.1960.9.59050
- [3] A. L. Blakers and W. S. Massey, The homotopy groups of a triad. II, Ann. of Math. (2) 55 (1952), 192–201. MR 44836, https://doi.org/10.2307/1969428
- [4] A. L. Blakers and W. S. Massey, Products in homotopy theory, Ann. of Math. (2) 58 (1953), 295–324. MR 60820, https://doi.org/10.2307/1969790
- [5] P. J. Hilton, A certain triple Whitehead product, Proc. Cambridge Philos. Soc. 50 (1954), 189–197. MR 60827, https://doi.org/10.1017/s0305004100029224
- [6] P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154–172. MR 68218, https://doi.org/10.1112/jlms/s1-30.2.154
- [7] D. E. Kruse, Relative homotopy classification of maps, Thesis, Univ. of Kansas, 1974.
- [8] -, Some properties of relative principal cofibrations (submitted).
- [9] J. F. McClendon, Higher order twisted cohomology operations, Invent. Math. 7 (1969), 183–214. MR 250302, https://doi.org/10.1007/BF01404305
- [10] Yasutoshi Nomura, A non-stable secondary operation and homotopy classification of maps, Osaka Math. J. 6 (1969), 117–134. MR 263076
- [11] Yasutoshi Nomura, A non-stable secondary operation and homotopy classification of maps, Osaka Math. J. 6 (1969), 117–134. MR 263076
- [12] E. Spanier, The homotopy excision theorem, Michigan Math. J. 14 (1967), 245–255. MR 206955
- [13] Hirosi Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962. MR 0143217
- [14] Robert W. West, Some cohomotopy of projective space, Indiana Univ. Math. J. 20 (1970/71), 807–827. MR 270373, https://doi.org/10.1512/iumj.1971.20.20064
- [15] J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. (2) 42 (1941), 409–428. MR 4123, https://doi.org/10.2307/1968907
- [16] J. H. C. Whitehead, On certain theorems of G. W. Whitehead, Ann. of Math. (2) 58 (1953), 418–428. MR 60230, https://doi.org/10.2307/1969745
Retrieve articles in Transactions of the American Mathematical Society with MSC: 55E35, 55G36
Retrieve articles in all journals with MSC: 55E35, 55G36
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1978-0467738-4
Article copyright:
© Copyright 1978
American Mathematical Society