The $\alpha$-union theorem and generalized primitive recursion
HTML articles powered by AMS MathViewer
- by Barry E. Jacobs
- Trans. Amer. Math. Soc. 237 (1978), 63-81
- DOI: https://doi.org/10.1090/S0002-9947-1978-0479362-8
- PDF | Request permission
Abstract:
A generalization to $\alpha$-recursion theory of the McCreight-Meyer Union Theorem is proved. Theorem. Let $\Phi$ be an $\alpha$-computational complexity measure and $\{ {f_\varepsilon }|\varepsilon < \alpha \}$ an $\alpha$-r.e. strictly increasing sequence of $\alpha$-recursive functions. Then there exists an $\alpha$-recursive function k such that $C_k^\Phi = { \cup _{\varepsilon < \alpha }}C_{{f_\varepsilon }}^\Phi$. The proof entails a no-injury cancellation atop a finite-injury priority construction and necessitates a blocking strategy to insure proper convergence. Two infinite analogues to ($\omega$-) primitive recursive functions are studied. Although these generalizations coincide at $\omega$, they diverge on all admissible $\alpha > \omega$. Several well-known complexity properties of primitive recursive functions hold for one class but fail for the other. It is seen that the Jensen-Karp ordinally primitive recursive functions restricted to admissible $\alpha > \omega$ cannot possess natural analogues to Grzegorczyk’s hierarchy.References
- Manuel Blum, A machine-independent theory of the complexity of recursive functions, J. Assoc. Comput. Mach. 14 (1967), 322–336. MR 235912, DOI 10.1145/321386.321395
- Robert L. Constable, The operator gap, J. Assoc. Comput. Mach. 19 (1972), 175–183. MR 314608, DOI 10.1145/321679.321692
- Martin Davis, Computability and unsolvability, McGraw-Hill Series in Information Processing and Computers, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958. MR 0124208
- Kurt Gödel, The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies, No. 3, Princeton University Press, Princeton, N. J., 1940. MR 0002514
- Andrzej Grzegorczyk, Some classes of recursive functions, Rozprawy Mat. 4 (1953), 46. MR 60426 Leo Harrington, Some contributions to the theory of recursion on higher types, Ph.D. Thesis, Massachusetts Institute of Technology, 1972. B. E. Jacobs, $\alpha$-computational complexity, Ph.D. Thesis; Tech. Report IMM-408, Courant Inst. Math. Sci., New York Univ., New York, 1975.
- Barry E. Jacobs, On generalized computational complexity, J. Symbolic Logic 42 (1977), no. 1, 47–58. MR 505383, DOI 10.2307/2272317
- Ronald B. Jensen and Carol Karp, Primitive recursive set functions, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 143–176. MR 0281602 S. C. Kleene, Introduction to metamathematics, North-Holland, Amsterdam, 1971.
- G. Kreisel, Set theoretic problems suggested by the notion of potential totality. , Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959) Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 103–140. MR 0146073
- G. Kreisel and Gerald E. Sacks, Metarecursive sets, J. Symbolic Logic 30 (1965), 318–338. MR 213233, DOI 10.2307/2269621 S. Kripke, Transfinite recursion on admissible ordinals. I, II (abstracts), J. Symbolic Logic 29 (1964), 161-162. —, The theory of transfinite recursions, Class Notes by A. Thomas Tymoczko (unpublished). A. Leggett and R. Shore, Types of simple $\alpha$-recursively enumerable sets (to appear).
- Manuel Lerman, Least upper bounds for minimal pairs of $\alpha$-r.e. $\alpha$-degrees, J. Symbolic Logic 39 (1974), 49–56. MR 357091, DOI 10.2307/2272342
- Manuel Lerman and Gerald E. Sacks, Some minimal pairs of $\alpha$-recursively enumerable degrees, Ann. Math. Logic 4 (1972), 415–442. MR 439605, DOI 10.1016/0003-4843(72)90007-1
- M. Machover, The theory of transfinite recursion, Bull. Amer. Math. Soc. 67 (1961), 575–578. MR 142448, DOI 10.1090/S0002-9904-1961-10696-4 E. McCreight and A. Meyer, Classes of computable functions defined by bounds on computation, Preliminary report, Proc. ACM Sympos. on Theory of Computing, 1969, pp. 79-88. R. Platek, Foundations of recursion theory, Ph.D. Thesis, Stanford Univ., 1966.
- G. E. Sacks and S. G. Simpson, The $\alpha$-finite injury method, Ann. Math. Logic 4 (1972), 343–367. MR 369041, DOI 10.1016/0003-4843(72)90004-6
- Richard A. Shore, $\sum _{n}$ sets which are $\Delta _{n}$-incomparable (uniformly), J. Symbolic Logic 39 (1974), 295–304. MR 419197, DOI 10.2307/2272642
- Richard A. Shore, Splitting an $\alpha$-recursively enumerable set, Trans. Amer. Math. Soc. 204 (1975), 65–77. MR 379154, DOI 10.1090/S0002-9947-1975-0379154-1 —, The recursively enumerable $\alpha$-degrees are dense, Ann. Math. Logic (to appear). —, $\alpha$-recursion theory (to appear).
- Gaisi Takeuti, Construction of the set theory from the theory of ordinal numbers, J. Math. Soc. Japan 6 (1954), 196–220. MR 67827, DOI 10.2969/jmsj/00620196
- Gaisi Takeuti, On the theory of ordinal numbers, J. Math. Soc. Japan 9 (1957), 93–113. MR 86751, DOI 10.2969/jmsj/00910093
- Tosiyuki Tugué, On the partial recursive functions of ordinal numbers, J. Math. Soc. Japan 16 (1964), 1–31. MR 167404, DOI 10.2969/jmsj/01610001
- Paul Young, Easy constructions in complexity theory: Gap and speed-up theorems, Proc. Amer. Math. Soc. 37 (1973), 555–563. MR 312768, DOI 10.1090/S0002-9939-1973-0312768-7
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 237 (1978), 63-81
- MSC: Primary 03D60; Secondary 68C25
- DOI: https://doi.org/10.1090/S0002-9947-1978-0479362-8
- MathSciNet review: 479362