Logarithmic Sobolev inequalities for the heat-diffusion semigroup
HTML articles powered by AMS MathViewer
- by Fred B. Weissler
- Trans. Amer. Math. Soc. 237 (1978), 255-269
- DOI: https://doi.org/10.1090/S0002-9947-1978-0479373-2
- PDF | Request permission
Abstract:
An explicit formula relating the Hermite semigroup ${e^{ - tH}}$ on R with Gauss measure and the heat-diffusion semigroup ${e^{t\Delta }}$ on R with Lebesgue measure is proved. From this formula it follows that Nelson’s hypercontractive estimates for ${e^{ - tH}}$ are equivalent to the best norm estimates for ${e^{t\Delta }}$ as a map ${L^q}(R)$ into ${L^p}(R),1 < q < p < \infty$. Furthermore,the inequality \[ \frac {d}{{dq}}\log \left \| \phi \right \|_q^q \leqslant \frac {n}{{2q}}\log \left [ {\frac {{{q^2}}}{{2\pi ne(q - 1)}} \cdot \frac {{\operatorname {Re} \langle - \Delta \phi ,{J^q}\phi \rangle }}{{\left \| \phi \right \|_q^q}}} \right ] + \log {\left \| \phi \right \|_q},\] where $1 < q < \infty ,{J^q}\phi = (\operatorname {sgn} \phi )|\phi {|^{q - 1}}$, and the norms and sesquilinear form $\langle ,\rangle$ are taken with respect to Lebesgue measure on ${R^n}$, is shown to be equivalent to the best norm estimates for ${e^{t\Delta }}$ as a map from ${L^q}({R^n})$ into ${L^p}({R^n})$. This inequality is analogous to Gross’ logarithmic Sobolev inequality. Also, the above inequality is compared with a classical Sobolev inequality.References
- William Beckner, Inequalities in Fourier analysis, Ann. of Math. (2) 102 (1975), no. 1, 159–182. MR 385456, DOI 10.2307/1970980
- Herm Jan Brascamp and Elliott H. Lieb, Best constants in Young’s inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no. 2, 151–173. MR 412366, DOI 10.1016/0001-8708(76)90184-5
- Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061–1083. MR 420249, DOI 10.2307/2373688 S. Mazur, Über schwache Konvergence in den Räumen (${L^p}$), Studia Math. 4 (1933), 128-133.
- Edward Nelson, The free Markoff field, J. Functional Analysis 12 (1973), 211–227. MR 0343816, DOI 10.1016/0022-1236(73)90025-6
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 237 (1978), 255-269
- MSC: Primary 47D05; Secondary 46E35
- DOI: https://doi.org/10.1090/S0002-9947-1978-0479373-2
- MathSciNet review: 479373