Positive cones and focal points for a class of $n$th-order differential equations
HTML articles powered by AMS MathViewer
- by M. S. Keener and C. C. Travis
- Trans. Amer. Math. Soc. 237 (1978), 331-351
- DOI: https://doi.org/10.1090/S0002-9947-1978-0479377-X
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are obtained for both the existence and absence of focal points for a class of nth order linear differential equations. The techniques utilized the theory of ${\mu _0}$-positive operators with respect to a cone in a Banach space.References
- R. D. Gentry and C. C. Travis, Comparison of eigenvalues associated with linear differential equations of arbitrary order, Trans. Amer. Math. Soc. 223 (1976), 167–179. MR 425241, DOI 10.1090/S0002-9947-1976-0425241-X
- R. D. Gentry and C. C. Travis, Existence and comparison of eigenvalues of $n$th order linear differential equations, Bull. Amer. Math. Soc. 82 (1976), no. 2, 350–352. MR 422747, DOI 10.1090/S0002-9904-1976-14062-1
- Einar Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252. MR 27925, DOI 10.1090/S0002-9947-1948-0027925-7
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 0181881
- Zeev Nehari, Disconjugate linear differential operators, Trans. Amer. Math. Soc. 129 (1967), 500–516. MR 219781, DOI 10.1090/S0002-9947-1967-0219781-0 —, Green’s functions and disconjugacy, (to appear).
- Curtis C. Travis, Comparison of eigenvalues for linear differential equations of order $2n$, Trans. Amer. Math. Soc. 177 (1973), 363–374. MR 316808, DOI 10.1090/S0002-9947-1973-0316808-5
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 237 (1978), 331-351
- MSC: Primary 34C10; Secondary 34B25
- DOI: https://doi.org/10.1090/S0002-9947-1978-0479377-X
- MathSciNet review: 479377