The $\mu$-invariant of $3$-manifolds and certain structural properties of the group of homeomorphisms of a closed, oriented $2$-manifold
HTML articles powered by AMS MathViewer
- by Joan S. Birman and R. Craggs
- Trans. Amer. Math. Soc. 237 (1978), 283-309
- DOI: https://doi.org/10.1090/S0002-9947-1978-0482765-9
- PDF | Request permission
Abstract:
Let $\mathcal {H}(n)$ be the group of orientation-preserving selfhomeomorphisms of a closed oriented surface Bd U of genus n, and let $\mathcal {K}(n)$ be the subgroup of those elements which induce the identity on ${H_1}({\text {Bd}}\;U;{\mathbf {Z}})$. To each element $h \in \mathcal {H}(n)$ we associate a 3-manifold $M(h)$ which is defined by a Heegaard splitting. It is shown that for each $h \in \mathcal {H}(n)$ there is a representation $\rho$ of $\mathcal {K}(n)$ into ${\mathbf {Z}}/2{\mathbf {Z}}$ such that if $k \in \mathcal {K}(n)$, then the $\mu$-invariant $\mu (M(h))$ is equal to the $\mu$-invariant $\mu (M(kh))$ if and only if k $\in$ kernel $\rho$. Thus, properties of the 4-manifolds which a given 3-manifold bounds are related to group-theoretical structure in the group of homeomorphisms of a 2-manifold. The kernels of the homomorphisms from $\mathcal {K}(n)$ onto ${\mathbf {Z}}/2{\mathbf {Z}}$ are studied and are shown to constitute a complete conjugacy class of subgroups of $\mathcal {H}(n)$. The class has nontrivial finite order.References
- Joan S. Birman, On Siegel’s modular group, Math. Ann. 191 (1971), 59–68. MR 280606, DOI 10.1007/BF01433472
- Joan S. Birman, On the equivalence of Heegaard splittings of closed, orientable $3$-manifolds, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 137–164. MR 0375318
- Sylvain E. Cappell and Julius L. Shaneson, Invariants of $3$-manifolds, Bull. Amer. Math. Soc. 81 (1975), 559–562. MR 367967, DOI 10.1090/S0002-9904-1975-13737-2
- Robert Craggs, A new proof of the Reidemeister-Singer theorem on stable equivalence of Heegaard splittings, Proc. Amer. Math. Soc. 57 (1976), no. 1, 143–147. MR 410749, DOI 10.1090/S0002-9939-1976-0410749-9 —, Relating Heegaard and surgery presentations for 3-manifolds, Notices Amer. Math. Soc. 20 (1973), A-617. —, 4-manifolds and their Heegaard diagrams, Notices Amer. Math. Soc. 23 (1976),A-311.
- James Eells Jr. and Nicolaas H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. (4) 60 (1962), 93–110. MR 156356, DOI 10.1007/BF02412768
- F. González-Acuña, Dehn’s construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58–79. MR 356022
- C. McA. Gordon, Knots, homology spheres, and contractible $4$-manifolds, Topology 14 (1975), 151–172. MR 402762, DOI 10.1016/0040-9383(75)90024-5
- Edna K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974/75), 160–164. MR 405423, DOI 10.1112/jlms/s2-9.1.160
- F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR 0341499
- A. G. Kurosh, The theory of groups, Chelsea Publishing Co., New York, 1960. Translated from the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes. MR 0109842
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373 W. Magnus, A. Karass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
- Morris Newman, Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972. MR 0340283
- Jakob Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), no. 1, 189–358 (German). MR 1555256, DOI 10.1007/BF02421324 —, Surface transformations of algebraically finite type, Danske Vid. Selsk. Mat.-Fys. Medd. 21 (1944), 1-89. H. Poincaré, Second complément a l’analysis situs, Proc. London Math. Soc. 32 (1900), 277-302. K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933), 189-194. —, Heegaarddiagramme und Invarianten von Mannigfaltigkeiten, Abh. Math. Sem. Univ. Hamburg 10 (1933), 109-118.
- H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, DOI 10.1007/BF02398271 —, Verschlingungsinvarianten, Sitz. Preuss. Akad. Wiss. Berlin 16 (1933), 811-828.
- James Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), no. 1, 88–111. MR 1501673, DOI 10.1090/S0002-9947-1933-1501673-5
- C. T. C. Wall, Non-additivity of the signature, Invent. Math. 7 (1969), 269–274. MR 246311, DOI 10.1007/BF01404310
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 237 (1978), 283-309
- MSC: Primary 57A10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0482765-9
- MathSciNet review: 0482765