THE (φ, 1) RECTIFIABLE SUBSETS OF EUCLIDEAN SPACE

BY

SAMIR KAR

ABSTRACT. In this paper the structure of a subset $E \subset \mathbb{R}^n$ with $H^1(E) < \infty$ has been studied by examining its intersection with various translated positions of a smooth hypersurface B. The following result has been established:

Let B be a proper $(n - 1)$ dimensional smooth submanifold of \mathbb{R}^n with nonzero Gaussian curvature at every point. If $E \subset \mathbb{R}^n$ with $H^1(E) < \infty$, then there exists a countably 1-rectifiable Borel subset R of \mathbb{R}^n such that $(E \sim R)$ is purely $(H^1, 1)$ unrectifiable and $(E \sim R) \cap (g + B) = \emptyset$ for almost all $g \in \mathbb{R}^n$.

Furthermore, if in addition E is H^1 measurable and $E \cap (g + B) = \emptyset$ for H^1 almost all $g \in \mathbb{R}^n$ then $H^1(E \cap R) = 0$. Consequently, E is purely $(H^1, 1)$ unrectifiable.

Introduction. The study of the geometric structure of subsets of \mathbb{R}^n relative to properties of their projections on k-dimensional linear subspaces has always played a central role in the progress of geometric measure theory. For example, the proof in [FF] of the existence of solutions for Plateau's problem and the minimal surface problem is dependent on this structure theory. The first results in this direction were obtained by Besicovitch in [BE], where he characterized 1-dimensional rectifiable subsets of \mathbb{R}^2 in terms of their projection properties. His results were extended by Federer [F2] to subsets of \mathbb{R}^n and by Brothers [B] to subsets of homogeneous spaces.

Federer showed that if $E \subset \mathbb{R}^n$ with $H^k(E) < \infty$ then there exists a countably k-rectifiable Borel subset R of \mathbb{R}^n such that $E \sim R$ is purely (H^k, k) unrectifiable and $L^k[p(E \sim R)] = 0$ for almost all orthogonal projections $p: \mathbb{R}^n \to \mathbb{R}^k$ where L^k is the Lebesgue measure in \mathbb{R}^k.

Brothers generalized Federer's results to subsets of a smooth n-dimensional Riemannian manifold X with a transitive group of isometries G. In order to make the transition from \mathbb{R}^n to X it was necessary to restate the projection properties without referring to projections. This he achieved by replacing

Received by the editors August 10, 1976.

Key words and phrases. Geometric measure theory, structure theory, Gaussian curvature, countably k-rectifiable, purely (H^k, k) unrectifiable, k-dimensional Hausdorff measure, Suslin sets, k-dimensional upper density of φ at u.

1This research contains the author's main result in his Ph.D. dissertation at Indiana University (1975).
orthogonal projections of $A \subset \mathbb{R}^n$ into \mathbb{R}^k with intersections $A \cap g(P)$ where g is an isometry of \mathbb{R}^n and P a fixed $(n-k)$-dimensional linear subspace. For example the statement “$p(A)$ has Lebesgue measure zero for almost all orthogonal projections $p : \mathbb{R}^n \to \mathbb{R}^m$ is equivalent to “$A \cap g(P)$ is empty for almost all isometries g.” Thus his main result has the following form:

Let G be a Lie group of isometries of X with $\dim G = n(n+1)/2$ and suppose G acts transitively on X. Let B be a fixed $(n-k)$-dimensional smooth submanifold of X. If $E \subset X$ with $\mathcal{H}^k(E) < \infty$ then there exists a countably k-rectifiable Borel subset R of X such that $(E \sim R)$ is purely (\mathcal{H}^k, k) unrectifiable and

$$(E \sim R) \cap g(B) = \emptyset$$

for almost all $g \in G$.

One of the central features of the proof of the above theorem is the use of the fact that the isotropy group at a point $0 \in X$ acts on the tangent space at 0 as either the orthogonal group or the special orthogonal group. We also note that $\dim G = n(n+1)/2$ implies in the Euclidean case that G is either the full group of isometries or the component of this group which contains the identity. Further, if X is connected and $\dim G = n(n+1)/2$, then X must be of constant curvature. Thus it is natural to ask if it is possible to obtain similar results with less restrictive assumptions on G; that is, can Brothers’ results hold if the dimension of G is less than $n(n+1)/2$?

Notice that if we take $k = 1$ and $B = S^{n-1} \subset \mathbb{R}^n$ in Brothers’ theorem then it follows that for almost all translations g of \mathbb{R}^n

$$(E \sim R) \cap g(B) = \emptyset.$$

On the other hand, standard examples (see for example [F1, 3.3.19]) show that this may not be true if B is a hyperplane. Based upon these examples together with the structure of the proof of his theorem, Brothers conjectured that if G is the group of translations of $X = \mathbb{R}^n$ then his result will hold at least for $(\mathcal{H}^1, 1)$ rectifiability provided it is assumed that the Gaussian curvature of B does not vanish. In this paper we prove this conjecture. Our main result is the following:

Theorem 1. Let B be a proper $(n-1)$-dimensional smooth submanifold of \mathbb{R}^n with nonzero Gaussian curvature at every point. If $E \subset \mathbb{R}^n$ with $\mathcal{H}^1(E) < \infty$, then there exists a countably 1-rectifiable Borel subset R of \mathbb{R}^n such that $(E \sim R)$ is purely $(\mathcal{H}^1, 1)$ unrectifiable and

$$(E \sim R) \cap (g + B) = \emptyset$$

for almost all $g \in \mathbb{R}^n$.

Furthermore, if in addition E is \mathcal{H}^1 measurable and $E \cap (g + B) = \emptyset$ for
Theorem 2 is an extension of this result involving measures more general than H^1.

The problem of extending these results to the general case where X is a Lie group with an invariant metric is difficult because of noncommutativity. On the other hand, our results clearly hold when X is a torus, hence for the case where X is an Abelian Lie group. In a subsequent paper we will investigate the possibility of extending our results to the case where $k > 1$.

I am indebted to Professor John Brothers for his continuing help, advice and encouragement during the preparation of this paper. He has always been a source of inspiration.

Preliminaries. The purpose of this section is to fix basic notation and terminology; more details may be found in [F1].

If M is an l-dimensional manifold of class 1 and $u \in M$, then $T_u(M)$ is the l-dimensional real vector space of tangent vectors of M at u.

For each finite dimensional vector space V and $l = 0, 1, 2, \ldots, \dim V$, $A_l(V)$ is the associated vector space of l vectors. Furthermore,

$$A_* = \bigoplus_{l=0}^{\dim V} A_l(V)$$

is the corresponding exterior algebra, with exterior multiplication \wedge.

Suppose M and N are manifolds of class 1 and $f: M \to N$. If $u \in M$, $w = f(u)$ and f is differentiable at u, the differential of f at u is a linear transformation

$$f_\#(u): T_u(M) \to T_w(N).$$

$f_\#(u)$ can be extended to a unique algebra homomorphism

$$f_\#: A_*[T_u(M)] \to A_*[T_w(N)].$$

If M and N are Riemannian manifolds and

$$r = \inf\{\dim M, \dim N\}$$

then the Jacobian of f at u is

$$Jf(u) = \sup\{|f_\#(u)(v)|: v \in A_r[T_u(M)], |v| = 1\}$$

where the indicated norm is induced by the metric on M and N.

If $u = (u_1, \ldots, u_n)$ and $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$, the inner product of u and w is $u \cdot w = \sum_{i=1}^{n} u_i \cdot w_i$.

e_1, \ldots, e_n are the standard orthonormal basis vectors of \mathbb{R}^n.

Let ϕ be a nonnegative measure on a Riemannian manifold M such that
closed sets are \(\phi \) measurable. In particular, \(H^l \) is the \(l \)-dimensional Hausdorff measure on \(M \).

The family of Suslin subsets of \(M \) contains the Borel subsets of \(M \) and has the following properties:

Each Suslin set is \(\phi \) measurable.

If \(\{ F_i \} \) is a countable family of Suslin sets, then \(\bigcup_{i=1}^{\infty} F_i \) and \(\bigcap_{i=1}^{\infty} F_i \) are Suslin sets.

If \(N \) is a smooth manifold and \(f: M \to N \) is continuous, then \(f(S) \) and \(f^{-1}(T) \) are Suslin sets whenever \(S \) and \(T \) are Suslin subsets of \(M \) and \(N \) respectively.

If \(\mu \) measures \(Y \) and \(A \subset Y \), then \(\mu \upharpoonright A \) is the measure on \(Y \) defined by the formula

\[
\mu \upharpoonright A(S) = \mu(A \cap S) \quad \text{for } S \subset Y.
\]

If \(f: Y \to Z \), then \(f_\#(\mu) \) is the measure on \(Z \) defined by

\[
f_\#(\mu)(S) = \mu[f^{-1}(S)] \quad \text{for } S \subset Z.
\]

\(R \subset M \) is \(k \)-rectifiable if there exists a Lipschitzian function mapping some bounded subset of \(\mathbb{R}^k \) onto \(R \).

\(R \subset M \) is countably \(k \)-rectifiable if \(R \) is the union of a countable family of \(k \)-rectifiable sets.

\(E \subset M \) is countably \((\phi, k)\) rectifiable if there exists a countably \(k \)-rectifiable set \(R \) with \(\phi(E \sim R) = 0 \).

\(E \subset M \) is \((\phi, k)\) rectifiable if \(\phi(E) < \infty \) and \(E \) is countably \((\phi, k)\) rectifiable.

\(E \subset M \) is purely \((\phi, k)\) unrectifiable if \(E \) contains no \(k \)-rectifiable set \(R \) with \(\phi(R) > 0 \).

\[
U_k(u, r) = \mathbb{R}^k \cap \{ w : |w - u| < r \}
\]

for \(r > 0 \), \(u \in \mathbb{R}^k \).

If \(r > 0 \), \(s > 0 \), \(u \in \mathbb{R}^n \) and \(Y \subset \mathbb{R}^n \), then

\[
X(u, r, Y, s) = \mathbb{R}^n \cap \{ w : \text{dist}(w, Y) < s \text{ dist}(w, u) \} \cap U_n(u, r).
\]

Throughout this paper \(B \) will denote a proper \((n - 1)\)-dimensional submanifold of class \(\infty \) of \(\mathbb{R}^n \) with nonzero Gaussian curvature at every point. If \(s > 0 \) and \(g \in -B \) denote

\[
K_{g,s} = \{ h : |h - g| < s \} \cap (-B).
\]

Also,

\[
K_{g,s}(B) = \{ h + b : h \in K_{g,s}, b \in B \}.
\]

If \(F: U \to \mathbb{R} \) is a \(C^2 \) function, where \(U \) is an open subset of \(\mathbb{R}^n \), we denote

\[
D_iF(x) = \partial F(x)/\partial x_i, \quad i = 1, 2, \ldots, n.
\]
\(D_\gamma F(x) = \partial^2 F(x)/\partial x_i \partial x_j, \quad i, j = 1, 2, \ldots, n. \)

We will denote by \(f_0 : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) the map defined by
\[
f_0(a, b) = a - b.
\]

If \(A \subset \mathbb{R}^n \), then \(S_{A,1} \) is the set of \((a, b) \in \mathbb{R}^n \times B\) such that for some \(\epsilon > 0 \)
\[
\lim_{s \rightarrow 0^+} \sup_{0 < r < \epsilon} \phi[A \cap X(a, r, a - b + B, s)](rs)^{-1} = 0.
\]
\(S_{A,2} \) is the set of \((a, b) \in \mathbb{R}^n \times B\) such that for all \(\epsilon > 0 \)
\[
\lim_{s \rightarrow 0^+} \sup_{0 < r < \epsilon} \phi[A \cap X(a, r, a - b + B, s)](rs)^{-1} = \infty.
\]
\(S_{A,3} = \mathbb{R}^n \times B \cap \{(a, b) : a \in \text{Clos}A \cap (a - b + B) \sim \{a\})\} \).

Lemma 1. For any \(g \in -B \) there exist positive constants \(r_1, s_1, \alpha, \beta \) such that if \(0 < s < s_1 \), then
\[
(i) \ X(0, r_1, g + B, s) \subset K_{g, \alpha}(B),
(ii) \ X(0, \infty, g + B, s) \supset K_{g, \beta}(B) \sim \{0\}.
\]

Proof. Without loss of generality we may assume \(g = 0 \in B \). By a proper choice of coordinate axes we may assume that
\[
B \cap U_0(0, 1) = \{(x, f(x)) : x \in U\},
\]
where \(0 \in U \), \(U \) is an open subset of \(\mathbb{R}^{n-1} \) which contains \(\{x \in \mathbb{R}^{n-1} : |x| < 1/2\} \) and \(f : U \rightarrow \mathbb{R} \) is of class \(C^\infty \) and such that
\[
f(0) = 0, \quad D_if(0) = 0 \quad \text{for } i = 1, 2, \ldots, n - 1.
\]

We may also assume that \(f \) is Lipschitzian and if \(|x| < 1/2 \), then
\[
|f(x)| < |x|,
\]
\[
|D_j f(x)|, |D_j f(x)|, |D_j f(x)| < Cn^{-3}
\]
for \(j, l, m = 1, 2, \ldots, n - 1 \), where \(C > 1 \).

Our assumption that the Gaussian curvature does not vanish at any point of \(B \) leads to the fact [KN, Volume 2, p. 17] that
\[
det(D_{ij} f(0)) \neq 0, \quad l, j = 1, 2, \ldots, n - 1.
\]

Let \(L \) be the linear transformation of \(\mathbb{R}^{n-1} \) with the matrix \((D_{ij} f(0)) \). Then there exists \(0 < V < C/2 \) such that whenever \(y \in S^{n-2} \subset \mathbb{R}^{n-1}, \)
\[
L(y) \cdot e_j > V \quad \text{for some } j \in \{1, 2, \ldots, n - 1\}.
\]

Part 1. Fix \(x, x_0 \in \mathbb{R}^{n-1} \) and \(s \in \mathbb{R} \) such that \(0 < |x_0| < (V/8C), \quad |x - x_0| < (sV|x_0|/16C), \quad \) and \(0 < s < (V/8Cn) \). Then the set of numbers \(f(x + t) - f(t) - f(x_0) \) corresponding to \(t = t_1 e_j \) and \(l \in \{1, 2, \ldots, n - 1\} \) with \(|t_i| < s \) contains the interval \(\{r : |r| < sV|x_0|/16\}. \)

Proof. Let us consider the sets

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[S_1 = \{ x: 0 < |x| < (V/4C) \} \cap \mathbb{R}^{n-1}, \]
\[S_2 = \{ t: 0 < |t| < (V/2C) \} \cap \mathbb{R}^{n-1}. \]

Let \(x \in S_1, \ t \in S_2 \). Expanding \(f(x + t) \) about \(x \) and \(f(t) \) about \(0 \), we have

\[
f(x + t) - f(t) = f(x) + Df(x)(t) + \sum_{j=1}^{n-1} t_j R_{ji},
\]

where

\[
R_{ji} = \int_0^1 (1 - \theta) \{ D_{ij} f(x + \theta t) - D_{ij} f(\theta t) \} \, d\theta.
\]

By assumption (3)

\[
|R_{ji}| \leq |x|C/2.
\]

Also,

\[
Df(x)(t) = \sum_{j=1}^{n-1} t_j \left[\sum_{i=1}^{n} x_i D_{ij} f(0) + \frac{1}{2} \sum_{m,l=1}^{n-1} x_m x_l D_{ml} f(\theta x) \right]
\]

where \(0 < \theta_j < 1 \).

Now let \(y = (x/|x|) \in S^{n-2} \). Then from (5), for some \(l \)

\[
0 < V < \left| \sum_k (x_k/|x|) D_{lk} f(0) \right|.
\]

Consequently by setting \(t_j = 0 \) for \(j \neq l \) in (8), we get

\[
t_l D_{lj} f(x) = |x|t_l H,
\]

where

\[
H = \sum_k (x_k/|x|) D_{lk} f(0) + (|x|/2) \sum_{k,m} (x_m/|x|)(x_k/|x|) D_{mk} f(\theta x).
\]

By (9) and (3), we conclude that

\[
|H| > V - V/8 > V/2.
\]

Therefore from (6), (10) we get

\[
f(x + t) - f(t) - f(x) = |x|t_l H + t_l^2 R_{lj} \text{ with}
\]

\[
|H| > V/2 \text{ and } |R_{lj}| < (|x|C/2) \text{ for}
\]

\[
t = t_l e_l \in S_2 \text{ and } x \in S_1.
\]

Now let \(x, x_0, s \) be such that \(0 < |x_0| \leq (V/8C), |x - x_0| < (sV|x_0|/16C) \)

and \(0 < s < (V/8Cn) \). Notice that \(x \in S_1 \). Also,

\[
|f(x) - f(x_0)| < (sV|x_0|/16).
\]

Now by (11), for \(t = t_l e_l \in S_2 \),
\(f(x + t) - f(t) - f(x_0) = |x| t H + t^2 R_H + f(x) - f(x_0), \)

where \(|H| > V/2\) and \(|R_H| < |x| C/2\).

Suppose \(H > 0 \). Since \(s < V/2C \), \(t = s e_1 \in S_2 \). By setting \(t_i = s \), we obtain

\[
\begin{align*}
f(x + t) - f(t) - f(x_0) &> (|x|/2)(Vs - Cs^2) - sV|x_0|/16 \\
&> (|x_0|/2)(1/2)(Vs - Cs) - sV|x_0|/16 > sV|x_0|/16.
\end{align*}
\]

Similarly, putting \(t_i = -s \), we obtain

\[
\begin{align*}f(x + t) - f(t) - f(x_0) &< -iF|x_0|/16.
\end{align*}
\]

Since for fixed \(x, x_0, s \), \(f(x + t) - f(t) - f(x_0) \) with \(t = t_i e_i \) is a continuous function of \(t \) on the interval \([-s, s]\), we conclude that Part 1 holds. Finally, in the case where \(H < 0 \) we reach the same conclusion by replacing \(s \) by \(-s\).

Part 2. \(K_{0.4s}(B \cap U_n(0, 1)) \supseteq U_n((x_0, f(x_0)), rVs/64C) \) where \(0 < s < V/8Cn, 0 < |x_0| < V/8C \) and \(r = |(x_0, f(x_0))| \).

Proof. Let

\[
S_{x_0} = R^{n-1} \times \{x: |x - x_0| < sV|x_0|/16C\}
\]

\[
\times R \cap \{\xi: |\xi - f(x_0)| < (sV|x_0|/16)(1 - sV/8C)\}.
\]

Since \(|x_0| < 1/2, r < 2|x_0| \) by (2). Also,

\[
(Vs|x_0|/16)(1 - sV/8C) > rVs/64C.
\]

Thus

\[
U_n((x_0, f(x_0)), rVs/64C) \subseteq S_{x_0}.
\]

So, let \((x, \xi) \in S_{x_0}\). We observe that \(x \in S_1 \). Since \(|\xi - f(x_0)| < sV|x_0|/16 \), by Part 1 there exists \(t = t_i e_i \) such that \(|t| < s \), and

\[
f(x + t) - f(t) - f(x_0) = \xi - f(x_0).
\]

Notice that by (2) \((-t, -f(t)) \in K_{0.4s} \subset -B\). Also,

\[
(x + t, f(x + t)) \in B \cap U_n(0, 1).
\]

Thus

\[
(x, \xi) \in K_{0.4s}(B \cap U_n(0, 1)).
\]

This together with (13) establishes our claim.

Part 3. \(K_{0.4s}(B) \supseteq X(0, V/16C, B, sV/128C) \) where \(0 < x < V/8nC \).

Proof. If \(w \in X(0, V/16C, B, sV/128C) \), then there exists \(b \in B \) such that \(|b - w| < r_0 sV/128C \), where \(r_0 = |w| \). Now \(r = |b| > |w| - |b - w| > r_0/2 \) and \(r < 2r_0 < V/8C \). Therefore \(b = (x_0, f(x_0)) \) with \(|x_0| < V/8C \). Hence
360 SAMIR KAR

\[w \in U_n((x_0, f(x_0)), rsV/64C) \subset K_{0,4s}(B \cap U_n(0, 1)) \]

by Part 2.

From Part 3 we get (i) of Lemma 1 immediately.

Turning to the proof of (ii) of the lemma, we claim that

(14) \[K_{0,2s}(B) \sim U_{n}(0, 1/16) \subset X(0, \infty, B, 32s), \]

where \(0 < s < V/8nC < 1/32 \). Indeed, if \(u \in K_{0,2s}(B) \sim U_{n}(0, 1/16) \), then \(u = g + w; g \in K_{0,2s}, w \in B \). But then

\[
\left[\text{distance}(u, B) \right]/|u| < 32s.
\]

Next let \(u_1 \in K_{0,2s}(B) \cap U_{n}(0, 1/16) \). This means that \(u_1 = g_1 + w_1 \), with \(g_1 \in K_{0,2s} \) and \(w_1 \in B \), and \(|u_1| < 1/16 \). Therefore

(15) \[K_{0,2s}(B) \cap U_{n}(0, 1/16) \subset K_{0,2s}(B \cap U_{n}(0, 1/8)). \]

So let us assume \(u \in K_{0,2s}(B \cap U_{n}(0, 1/8)) \). Then \(u = (t, -f(-t)) + (x, f(x)) \) where \((t, -f(-t)) \in K_{0,2s} \) and \((x, f(x)) \in B \cap U_{n}(0, 1/8) \). Write \(y = x + t \), so that \(|y| < 1/4 \). Thus \(y \in U \). Also,

\[
f(x) - f(-t) = f(x) - f(x - y) = f(y) + Df(y)(x - y) + \sum_{j,l} (x_j - y_j)(x_l - y_l)R_{jl}
\]

where

\[
R_{jl} = \int_0^1 (1 - \theta) \{ D_{j,l}f(y + \theta(x - y)) - D_{j,l}f(\theta(x - y)) \} \, d\theta
\]

and, as in (7), \(|R_{jl}| < |y|C/2 \). Note that \(|Df(y)| \leq C|y| \). We thus conclude that

\[
|f(x) - f(-t) - f(y)| \leq C|y|^{2s} + n^2(2s)^2|y|C/2.
\]

Writing \(v = (y, f(y)) \) we find that

(16) \[|f(x) - f(-t) - f(y)| < 4|v|Cn^2s, \]

hence \(\text{distance}(u, B) < |u - v| < 4|v|Cn^2s \). Since \(|v| < 2|u| \) by (2) we conclude that \(u \in X(0, \infty, B, 8Cn^2s) \). Hence

\[K_{0,2s}(B) \cap U_{n}(0, 1/16) \subset X(0, \infty, B, 8Cn^2s), \]

by (15). This together with (14) establishes (ii).

Lemma 2. Let \(g \in -B \). Then there exist positive numbers \(r_2, s_2, H_1, H_2 \) and \(\delta > 1 \) such that if \(0 < s < s_2 \) and \(0 \neq w \in K_{g,s}(B) \cap U_n(0, r_2) \), then

(i) \(H^{n-2}[(w - B) \cap K_{g,s}] \geq H_1s^{n-2}, \)

(ii) \(H^{n-2}[(w - B) \cap K_{g,s}] \leq H_2s^{n-2}. \)

Proof. Assuming \(g = 0 \in B \) and choosing \(f \) and \(U \) as in the proof of
Lemma 1 we denote $U_0 = -U$ and define h: $U_0 \to \mathbb{R}$ by $h(x) = -f(-x)$. Thus

$$-B \cap U_0(0,1) = \{(x,h(x)): x \in U_0\}.$$

Since $\det(D_y h(0)) \neq 0$, we can (with the use of an orthogonal change of coordinates) assume h has a Taylor expansion of the form

$$h(x) = \sum_{i=1}^{n-1} k_i x_i^2 + \sum_{i,j,k=1}^{n-1} \alpha_{ijk}(x)x_i x_j x_k,$$

with $k_i \neq 0$, $|\alpha_{ijk}|$ and $|D_y \alpha_{ijk}|$ bounded and C^∞ on U_0. We will write

$$K_0 = \min(|k_1|, \ldots, |k_{n-1}|) > 0 \quad \text{and} \quad K = \max(1, |k_1|, \ldots, |k_{n-1}|).$$

For $i = 1, 2, \ldots, (n - 1)$ we will write $\pi_i x = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$ whenever $x = (x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) \in \mathbb{R}^{n-1}$.

PART 1. There exist $C > 2$, $0 < \gamma < \min(1/16, K_0/\sqrt{4C(2n)^{1/2}})$, and a C^∞ function Φ defined on

$$\Omega = \mathbb{R}^{n-1} \times \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R}$$

$$\cap \{(x,\rho,\eta,\xi): |x| < 1/4, |\rho| < 1/4, |\eta|^2 + |\xi|^2 = 1\}$$

such that if $0 < s < \gamma$ and $0 \neq w = \rho(\rho, \eta) \in K_{a,s}(B) \cap U_0(0, \gamma)$ with $|\rho|^2 + |\eta|^2 = 1$, then the following are true:

(i) $(w-B) \cap K_{a,s} = \{(x, h(x)) \in K_{a,s}: \Phi(x, \rho, \eta, \xi) = 0\}$.

(ii) There exists $i \in \{1, 2, \ldots, n - 1\}$ (which depends only on γ) such that

$$|\rho_i| > (2n)^{-1/2},$$

and for $|x| < \gamma$,

$$|D_i \Phi(x, \rho, \eta)| > 1/C$$

and

$$|D_j \Phi(x, \rho, \eta)| / |D_i \Phi(x, \rho, \eta)| < C \quad \text{for} \quad j = 1, 2, \ldots, n - 1, j \neq i.$$

(iii) If for $i = 1, 2, \ldots, n - 1$ we write $\Phi_i(x, \rho, \eta) = \Phi(x, \rho, \eta)$ where $x = (0, \ldots, 0, x_i, 0, \ldots, 0)$, $|x_i| < 1/4$, then there exist C^∞ functions ϕ_i, g_i, each having domain $\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R} \cap \{(x_i, \rho, \eta, \xi): |x_i|, |\rho| < 1/4, |\eta|^2 + |\xi|^2 = 1\}$ such that $|g_i|, |\phi_i|, |D_i \phi_i| < C$ and

$$\Phi_i(x, \rho, \eta, \xi) = 2k_i x_i \rho_i - \rho \sum_{i=1}^{n-1} k_i \rho_i^2 - \eta$$

$$+ g_i(x, \rho, \eta, \xi) x_i^2 + \rho \phi_i(x, \rho, \eta, \xi).$$

PROOF. By choosing ρ_0 sufficiently small ($0 < \rho_0 < 1/8$) we may assume that

$$B \cap U_0(0, 2\rho_0) \sim \{0\} \subset \mathbb{X}(0, \infty, T_0(B), 1/8).$$
Now if \(u \in X(0, \infty, B \cap U^0_n(0, 2\rho_0), s_0) \) where \(0 < s_0 < 1/8 \) then there exists \(0 \neq b \in B \cap U^0_n(0, 2\rho_0) \) such that \(|u - b| < |u|s_0 \). But by the above assumption there exists \(w \in T^0_n(B) \) such that \(|b - w| < |b|/8 < 9|u|/64 \). Hence \(u \in X(0, \infty, T^0_n(B), 1/2) \). Assuming \(s_0 < s_1 \), we apply Lemma 1(ii) with \(\beta s_1 = \rho_1 = \min(\beta s_0, \rho_0) \) to obtain

\[
[\left. K_{0,s_1}(B \cap U^0_n(0, 2\rho_1)) \right] \approx \{0\} \subset X(0, \infty, T^0_n(B), 1/2).
\]

Consider now \(x \in \mathbb{R}^{n-1} \) and \((t, \theta) \in \mathbb{R}^{n-1} \times \mathbb{R} = \mathbb{R}^n \) with \(|(t, \theta)| < 1/4 \). Applying (1) and writing \((t, \theta) = \rho(y, \eta) \) where \(|(y, \eta)| = 1 \), we obtain

\[
h(x) - h(x - t) - t = \rho \Phi(x, \rho, y, \eta)
\]

where

\[
\Phi(x, \rho, y, \eta) = \sum_{i=1}^{n-1} 2k_i x_i y_i - \rho \sum_{i=1}^{n-1} k_i y_i^2 - \eta + R(x, \rho, y, \eta)
\]

with

\[
R(x, \rho, y, \eta) = \sum_{i,j,k=1}^{n-1} \alpha_{ijk}(x) \left\{ -y_j x_j x_k - y_k x_i x_j - y_j x_i x_k + \rho x_j y_j y_k + \rho x_k y_j y_j + \rho x_j y_j y_j - \rho y_j y_j y_j \right\}
\]

\[
+ \sum_{i,j,k,l=1}^{n-1} \left\{ y_j \int_0^1 D_j \alpha_{i j k} (\tau x + (1 - \tau)(x - \rho y)) \, d\tau \right\} \times (x_i - \rho y_j)(x_j - \rho y_j)(x_k - \rho y_k).
\]

Obviously \(\Phi \) is \(C^\infty \) with domain

\[
\Omega = \{(x, \rho, y, \eta) : |x| < 1/4, |\rho| < 1/4, |y|^2 + |\eta|^2 = 1\}.
\]

For each \(i = 1, 2, \ldots, (n - 1) \) we write

\[
D_i \Phi = \partial \Phi / \partial x_i = 2k_i y_i + T_{i,x} + T_{i,\rho}
\]

where \(T_{i,x} \) stands for the sum of all terms containing at least one \(x_j \) but not \(\rho \) as a factor and \(T_{i,\rho} \) stands for the sum of all terms with \(\rho \) as a factor. Since \(|\alpha_{ijk}|, |D_i \alpha_{ijk}| \) are all bounded, by assuming \(|x|, |\rho| < \gamma' < 1/4 \) we can make

\[
|T_{i,x}|, |T_{i,\rho}| < K_0/(2(2n)^{1/2}).
\]

Also, for each \(i \in \{1, 2, \ldots, n - 1\} \), by setting \(x_j = 0 \) for \(j \neq i \) in \(R(x, \rho, y, \eta) \) we will get functions of \(x_i, \rho, y, \eta \) in this form:

\[
g_i(x_i, \rho, y, \eta) x_i^2 + \rho \phi_i(x_i, \rho, y, \eta).
\]

We may assume
where $C > 3K(2n)^{1/2}/K_0 > 2$. Let

$$\gamma = \min\{\gamma', 1/16, K_0/[4C(2n)^{1/2}], \rho_1\}.$$

Fix $0 < s < \gamma$ and $0 \neq w \in K_{0,s}(B) \cap U_n(0, \gamma)$. Then

$$K_{0,s}(B) \cap U_n(0, \gamma) = K_{0,s}(B \cap U_n(0, 2\gamma)) \cap U_n(0, \gamma),$$

$$\{w - B\} \cap K_{0,s} = \{w + K_{0,4\gamma}\} \cap K_{0,s}.$$

Therefore, writing $w = (t, \theta) = \rho(y, \eta)$ with $|(y, \eta)| = 1$ and using (3) we obtain

$$K_0 \cap \{w - B\} \cap K_{0,s} = \{(x, h(x)) \cap K_0; \Phi(x, \rho, y, \eta) = 0\}$$

giving us (i) of Part 1.

Furthermore, if $0 \neq w \in K_{0,s}(B) \cap U_n(0, \gamma)$ where $0 < s < \gamma$ and $|x| < \gamma$, then from (4) and (2) we have $0 \neq w \in \mathbb{R}_0 \cap U_n(0, 1/2)$. Since $T_0(B) = \mathbb{R}^{n-1} \times \{0\}$ and $w = \rho(y, \eta)$, $|y|^2 + |\eta|^2 = 1$, there exists $i \in \{1, 2, \ldots, n - 1\}$ for which $|y_i| > (2(n - 1))^{-1/2} > (2n)^{-1/2}$. But then

$$|D_1\Phi(x, \rho, y, \eta)| = 2|k_iy_i + T_{i,x} + T_{i,y}| > K_0/(2n)^{1/2} > 1/C.$$

Also, for $j = 1, 2, \ldots, n - 1, j \neq i$, we have

$$|D_1\Phi(x, \rho, y, \eta)/D_1\Phi(x, \rho, y, \eta)| < 3(2n)^{1/2}K_0^{-1/2}.$$

This proves (ii) of Part 1.

Part 2. Let $0 < s < \gamma/4nC$ and $\rho, \eta \in \mathbb{R}, y \in \mathbb{R}^{n-1}$ be given with $|y|^2 + |\eta|^2 = 1, |\rho| < \gamma$ and $|y_i| > (2n)^{-1/2}$. Let $|a_i| < Csn$ be such that $\Phi_i(a_i, \rho, y, \eta) = 0$. If $|x_i| < Csn$ and $\Phi_i(x_i, \rho, y, \eta) = 0$, then $x_i = a_i$.

Proof. Suppose $|c_i| < Csn$. Then

$$|\Phi_i(c_i, \rho, y, \eta)| = |2k_i(a_i - c_i)y_i + \left[g_i(a_i, \rho, y, \eta) - g_i(c_i, \rho, y, \eta)\right]c_i^2|$$

Applying the mean value theorem to g_i and Φ_i and using the bounds on $g_i, D_1g_i, D_1\Phi_i$, one can show that since $Csn < \gamma$ this expression is not less than

$$|a_i - c_i|K_0/(2n)^{1/2}.$$

Part 3. If $0 < s < \gamma/4nC$ and

$$0 \neq w = \rho(y, \eta) \in K_{0,s/C}(B \cap U_n(0, 2\gamma)) \cap U_n(0, \gamma)$$

with $|(y, \eta)| = 1$, then there exists $i \in \{1, 2, \ldots, n - 1\}$ (depending only on y) such that $|y_i| > (2n)^{-1/2}$. Corresponding to such an i there is a C^∞ function

$$\psi_{w,i}: U_{n-2}(0, s/C) \to \mathbb{R}$$

such that
(i) If \(|z| < s/C\), then
\[\Phi(\sigma_i(z), \rho, \gamma, \eta) = 0 \]
where we define
\[\sigma_i(z) = (z_1, \ldots, z_{i-1}, \psi_{w,i}(z), z_i, \ldots, z_{n-2}) \quad (\psi_{w,i}(z) \text{ in } i\text{th place}). \]

(ii) \(|\psi_{w,i}(0)| < 2ns\).

(iii) If \(x \in \mathbb{R}^{n-1}\), \(|x| < s/C\) and \(\Phi(x, \rho, \gamma, \eta) = 0\), then
\[x = \sigma_i(\pi_i x). \]

It follows that
\[H_{n-2}^2((w - B) \cap K_{0.6ns}) \supset H_1s^{n-2} \]
where \(H_1 = C^{2-n}H_{n-2}[U_{n-2}(0, 1)]\).

Proof. We have \(w = g_0 + b_0\) where \(g_0 \in K_{0.5/C}\) and \(b_0 \in B \cap U_n(0, 2\gamma)\). Set \(g_0 = (x_0, h(x_0))\) where \(x_0 \in \mathbb{R}^{n-1}\). By Part 1(i), \(\Phi(x_0, \rho, \gamma, \eta) = 0\). In view of (ii) of Part 1, we may assume that \(\gamma < 2/n\) and \(\delta > 0\) and \(\Phi(\sigma(x_0), \rho, \gamma, \eta) = 1/C\) for \(|x| < \gamma\). We will identify \(\mathbb{R}^{n-2} \times \mathbb{R} = \mathbb{R}^{n-1}\); denote \(x_0 = (z_0, \xi_0)\). By the implicit function theorem there exist a \(\delta > 0\) and a \(C^\infty\) function \(\psi_0: U_{n-2}(z_0, \delta) \to \mathbb{R}\) such that \(\psi_0(z_0) = \xi_0\) and \(\Phi(z, \psi_0(z)) = 0\), \(|z - z_0| < \gamma/2\) for \(|x| < \gamma/2\), and the relations
\[(x', \rho, \gamma, \eta) = 0, \quad |x' - z_0| < \delta, \quad |\pi_{n-1}x' - z_0| < \delta \]
hold only in case \(x'_{n-1} = \psi_0(\pi_{n-1}x')\). Since \(\rho, \gamma, \eta\) are all fixed we may write \(\Phi(z, \psi_0(z))\) in place of \(\Phi((z, \psi_0(z)), \rho, \gamma, \eta)\). We claim that \(\delta\) may be assumed to be greater than \(2s/C\).

Let \(S\) be the set of all \(\delta > 0\) corresponding to which there exists \(\psi_0\) as above and let \(\delta_0 = \operatorname{lub} S\). We may assume \(\delta_0 < 2s/C\). Since the \(\psi_0\) are unique we conclude that \(\delta_0 \in S\) with \(\cup \{\psi_0: \delta \in S\} = \psi_0^c\). Set \(\psi = \psi_0^c\) by Part 1(ii), \(|D_0\psi| < C, j \in \{1, 2, \ldots, n - 2\}\). Thus \(\psi\) is Lipschitz, and hence uniformly continuous in \(U_{n-2}(z_0, \delta_0)\). Therefore \(\psi\) has a continuous extension to the Closure of \(U_{n-2}(z_0, \delta_0)\). Let \(z\) be such that \(|z - z_0| = \delta_0\) and denote \(\xi = \psi(z)\). Since \(\Phi\) is continuous, \(\Phi(z, \xi) = 0\). By the mean value theorem and continuity of \(\psi\), \(|\xi| < 2ns\). Also \(|x| < 3s\), so \(|(z, \xi)| < 4ns < \gamma\). Thus \(D_{n-1}\Phi(z, \xi) \neq 0\). Hence \(\psi\) has a \(C^\infty\) extension to a neighborhood of the compact set \(\operatorname{Clos} U_{n-2}(z_0, \delta_0)\) [H, p. 23] which contradicts the maximality of \(\delta_0\). Writing \(\psi_{w,i} = \psi\) we conclude that (i) and (ii) hold. Note that it also follows from what we have shown that
\[((z, \xi), h(z, \xi)) \in K_{0.6ns} \quad \text{for } |z| < s/C \text{ and } \psi(z) = \xi. \]
Thus by Part 1(i) we conclude that
\(W^{-2}(w - B) \cap K_{0.6n} \)
\(\geq W^{-2}(P_{n-1}(w - B) \cap K_{0.6n}) \)
where \(P_{n-1}(x_1, \ldots, x_{n-1}, x_n) = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1} \)
\(\geq W^{-2}(U_{n-2}(0, 1)](s/C)^{n-2}. \)

Finally, fix \(x \in \mathbb{R}^{n-1} \) such that \(|x| < s/C \) and \(\Phi(x, \rho, y, \eta) = 0. \) Choosing \(\psi_{w,n-1} \) as above with \(x_0 \) replaces by \(x \) we infer from Part 2 that \(\psi_{w,n-1}(0) = \psi_{w,n-1}(0). \) Thus by (\(\ast \))
\(\psi_{w,n-1}[U_{n-2}(0, s/C)] = \psi_{w,n-1}[U_{n-2}(0, s/C)] \)
which proves (iii).

Part 4. There exist \(0 < \alpha_0 < 1, 0 < s_0 < \gamma/4nC, 0 < \delta_0 < \gamma \) and for each \(i \in \{1, 2, \ldots, n-1\} \) a positive integer \(m_i \) such that the following is true:

Let
\[W = \mathbb{R}^{n-1} \times \mathbb{R} \cap \{(y, \eta): |(y, \eta)| = 1, |\eta| < \alpha_0 s_0\}. \]

For each \(i \in \{1, 2, \ldots, n-1\} \) and \(j \in \{1, 2, \ldots, m_i\} \) there exist \(\delta_j > 0, (y_{ij}, \eta_{ij}) \in W_i = W \cap \{(y, \eta): |(y, \eta)| = 1, |y| > [2(n-1)]^{-1/2} \) and \(\theta_j: \mathbb{R}^{n-2} \cap \{z: |z| < \delta_j \} \times \mathbb{R} \cap \{\rho: |\rho| < \delta_j \} \times (\mathbb{R}^{n-1} \times \mathbb{R}) \cap \{(y, \eta): |(y, \eta)| = 1, |(y, \eta) - (y_{ij}, \eta_{ij})| < \delta_j, |y| > (2n)^{-1/2} \to \mathbb{R} \) all having the same Lipschitz constant \(H_0, \) such that for each \((y_0, \eta_0) \in W \) there exist \(i \) and \(j \) for which:

(i) \(\mathbb{R}^{n-1} \times \mathbb{R} \cap \{(y, \eta): |(y, \eta)| = 1, |(y, \eta) - (y_0, \eta_0)| < \delta_0 \} \subset \mathbb{R}^{n-1} \times \mathbb{R} \cap \{(y, \eta): |(y, \eta)| = 1, |(y, \eta) - (y_{ij}, \eta_{ij})| < \delta_j, |y| > (2n)^{-1/2} \).

(ii) If \(|\rho| < \delta_o, (y', \eta') \in \mathbb{R}^{n-1} \times \mathbb{R} \cap \{(y', \eta'): |(y', \eta')| = 1, |(y', \eta') - (y_0, \eta_0)| < \delta_0 \) and \(|z| \in \mathbb{R}^{n-2} \) with \(|z| < \delta_o \) then
\[|\theta_j(z, \rho, y, \eta)| < C_{\delta_0} \eta, \]

and
\[\Phi(\sigma_j(z, \rho, y, \eta), \rho, y, \eta) = 0 \]

where we define
\[\sigma_j(z, \rho, y, \eta) = (z_1, \ldots, \theta_j(z, \rho, y, \eta), \ldots, z_{n-2}) \quad (\theta_j \text{ in } i\text{th place}). \]

Proof. Using differentiability of \(h \) together with Lemma 1 and the fact that \(0 \in B, \) we infer the existence of \(0 < s_0 < \gamma/4nC, \) and \(0 < \alpha_0 < 1 \) such that
\[\text{Clos } X(0, \gamma/2, T_0(B), \alpha_0 s_0) \subset K_{0.6/C}(B) \cap U_n(0, \gamma) \]

\[\subset X(0, \infty, T_0(B), 1/2) \cup \{0\}. \]

We may assume that \(i = n-1; \) fix \((y, \eta) \in W_{n-1} \) and let \(0 < |\rho| < \gamma/2. \)

Then
$0 \neq \rho(y, \eta) \in \text{Clos } X(0, \gamma/2, T_0(B), \alpha_0\delta_0) \subset K_{0,s/C}(B) \cap U_n(0, \gamma)$.

Let $\psi_{\rho(y, \eta)n-1}$ be the C^∞ function found in Part 3. Observing that i is independent of ρ, we conclude using Part 3(i), (ii) and continuity of Φ at $\rho = 0$ that there exists $a_{n-1} \in \mathbb{R}$ such that $\Phi((0, a_{n-1}), 0, \gamma, \eta) = 0$ and $|a_{n-1}| < 2ns < C \eta$. Also we infer from Part 1(ii) that $|D_{a_{n-1}}\Phi((0, a_{n-1}), 0, \gamma, \eta)| > 1/C$. Using the implicit function theorem at each of the points $((0, a_{n-1}), 0, \gamma, \eta) \in \mathbb{R}^{n-1} \times \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R}$ where $(\gamma, \eta) \in W_{n-1}$ together with the Lebesgue covering lemma, we easily infer (i) and (ii) by noting that if $(\gamma_0, \eta_0) \in W$ then

$\begin{align*}
(\gamma_0, \eta_0) \in \text{Clos } X(0, 1, T_0(B), \alpha_0\delta_0) \subset X(0, \infty, T_0(B), 1/2) \cup \{0\};
\end{align*}$

consequently there exists an $i \in \{1, 2, \ldots, n - 1\}$ such that

$|\gamma_0| > [2(n - 1)]^{-1/2}$

and so $(\gamma_0, \eta_0) \in W_i$.

Part 5. There exists $0 < \beta_0 < 1$ such that if $0 < s < \min(\beta_0\delta_0, \delta_0)$, $0 < r < \delta_0$ and $0 \neq w = \rho(0, \eta, \eta) \in K_{0,s/C}(B) \cap U_n(0, r)$ with $|\gamma, \eta| = 1$, then there exist $i \in \{1, 2, \ldots, n - 1\}$ and $j \in \{1, 2, \ldots, m_i\}$ such that whenever $0 \neq w = \rho(y, \eta, \eta) \in K_{0,s/C}(B) \cap U_n(0, r)$ with $|\gamma, \eta| = 1$ and $|\gamma, \eta| - (\gamma_0, \eta_0) < \delta_0$, we have

\[
K_{0,s/C} \cap (w - B) \subset \{(\sigma_i(z, \rho, \gamma, \eta), h \circ \sigma_i(z, \rho, \gamma, \eta)) : |z| < s/C\}.
\]

It follows that

$H^{n-2}[K_{0,s/C} \cap (w - B)] < H_2(s/C)^{n-2}$

where H_2 is a real number which does not depend on s, w and w_0.

Proof. We note that there exists $0 < \beta_0 < 1$ such that

$K_{0,\beta_0 s/C}(B) \cap U_n(0, \gamma/2) \subset \text{Clos } X(0, \gamma/2, T_0(B), \alpha_0\delta_0).$

Therefore $(\gamma_0, \eta_0) \in W$; choosing $i \in \{1, 2, \ldots, n - 1\}$ and $j \in \{1, 2, \ldots, m_i\}$ by Part 4(i) we see that if $0 \neq w = \rho(y, \eta, \eta) \in K_{0,s/C}(B) \cap U_n(0, r)$ with $|\gamma, \eta| = 1$ and $|\gamma, \eta| - (\gamma_0, \eta_0) < \delta_0$, then $|\gamma| > (2n)^{-1/2}$. Thus if $(x, h(x)) \in K_{0,s/C} \cap (w - B)$, then by Parts 1 and 3 there exists a C^∞ function $\psi_{\omega,i}$ such that

$\begin{align*}
x = \sigma_i(\pi_i x) = (x_1, \ldots, \psi_{\omega,i}(\pi_i x), \ldots, x_{n-1}).
\end{align*}$

We infer from Part 4(ii) and Part 2 that we must have

$\theta_j(\pi_i x, \rho, \gamma, \eta) = \psi_{\omega,i}(\pi_i x),$

hence $x = \sigma_i(\pi_i x, \rho, \gamma, \eta)$. The desired inclusion follows.

Now the map F defined by

$F(x) = (x, h(x)), \quad x \in U_0,$
is Lipschitzian since h is Lipschitzian on U_0; let M be a Lipschitz constant for F. Furthermore, $1 + H_0$ is a Lipschitz constant for σ_y. Therefore,

$$H^{n-2}[K_{\phi,C} \cap (w - B)] < M^{n-2}H^{n-2}\left[\mathbb{R}^{n-1} \cap \{ \sigma_y(z, \rho, \gamma, \eta): |\gamma| < s/C \} \right] < H_2(s/C)^{n-2}$$

where $H_2 = [M(1 + H_0)]^{n-2}H^{-2}[U_{n-2}(0, 1)]$. This completes the proof of Part 5.

Combining Part 3 and Part 5 and noting (4) we get the desired lemma.

Lemma 3. Let A be a Suslin subset of \mathbb{R}^n. Then H^{n-1} almost all $g \in -B$ satisfy one of the following three conditions:

(i) For some $e > 0$,

$$\lim_{s \to 0^+} \sup_{0 < r < e} (rs)^{-1} \Phi[A \cap K_{g,s}(B) \cap U_n(0, r) \sim \{0\}] = 0.$$

(ii) For all $e > 0$,

$$\lim_{s \to 0^+} \sup_{0 < r < e} (rs)^{-1} \Phi[A \cap K_{g,s}(B) \cap U_n(0, r) \sim \{0\}] = \infty.$$

(iii) $0 \in \text{Clos}[A \cap (g + B) \sim \{0\}]$.

Proof. The proof is similar to that of [B, 3.7].

Let r_2 be as in Lemma 2. We may assume $A \subset U_n(0, r_2)$. Consider the map $F: -B \times B \to \mathbb{R}^n \times -B$ with $F(g, b) = (g + b, g)$. Denote $\Phi = F(-B \times B)$. Also, let

$$\pi_1: \mathbb{R}^n \times (-B) \to \mathbb{R}^n \text{ with } \pi_1(u, g) = u$$

and

$$\pi_2: \mathbb{R}^n \times (-B) \to -B \text{ with } \pi_2(u, g) = g$$

denote the projection maps.

For $u \in \mathbb{R}^n$ denote $\Phi_u = \pi_1^{-1}(u) \cap \Phi$. Thus

$$\Phi_u = \{(u, g): g \in (u - B) \cap (-B)\},$$

and it follows that for $g \in -B$ and $s > 0$

$$\Phi_u \cap \pi_2^{-1}(K_{g,s}) = \{(u, h): h \in K_{g,s} \cap (u - B)\}.$$

Let ϕ' be the measure on Φ such that for $S \subset \Phi$,

$$\phi'(S) = \int_A H^{n-2}(\Phi_u \cap S) \, d\phi_u.$$

Now, for each positive integer n we introduce the measure Ψ_n over $(-B)$ defined by

$$\Psi_n(T) = \sup_{0 < r < 1/n} \phi'[\pi_1^{-1}(U_n(0, r)) \cap \pi_2^{-1}(T) \cap \Phi]r^{-1}$$
for $T \subset -B$. Let
\[P_r = (-B) \cap \left\{ g: \lim_{s \to 0^+} \left[\Psi_{s} (K_{g,s}) / s^{\alpha-1} \right] = 0 \right\}, \]
\[Q_r = (-B) \cap \left\{ g: \lim_{s \to 0^+} \left[\Psi_{s} (K_{g,s}) / s^{\alpha-1} \right] = \infty \right\}, \]
\[R_r = \pi_2 \left[\pi_1^{-1} (A \cap U_n(0, r^{-1})) \cap \Phi \right], \]
\[P = \bigcup_{r=1}^{\infty} P_r, \quad Q = \bigcap_{r=1}^{\infty} Q_r, \quad R = \bigcap_{r=1}^{\infty} R_r. \]

It follows that $H^{\alpha-1}((-B) \sim (P \cup Q \cup R)) = 0$.

Using Lemma 2 we complete the proof by proceeding as in the proof of [B, 3.7].

Lemma 4. Let A be a Suslin subset of R^n with $\phi(A) < \infty$. Then
\[\phi \times H^{\alpha-1} [A \times B \sim (S_{A,1} \cup S_{A,2} \cup S_{A,3})] = 0. \]

Proof. Let us fix $a \in R^n$ and $(a, b) \in \{a\} \times B$. We note that $\tau_{a}(A)$ is a Suslin set. Also $(\tau_{a})_{\#} \phi$ is a nonnegative measure such that closed sets are $(\tau_{a})_{\#} \phi$ measurable. Consequently, replacing A and ϕ in Lemma 3 by $\tau_{a}(A)$ and $(\tau_{a})_{\#} \phi$ we see that
\[H^{\alpha-1} [\{a\} \times B \sim S_{A,1} \cup S_{A,2} \cup S_{A,3}] = 0. \]

We infer from [B, 4.1–4.2] that $S_{A,1}$, $S_{A,2}$, $S_{A,3}$ are Suslin sets. Also, $\phi(A) < \infty$, hence we can apply Fubini's theorem to obtain our assertion.

Lemma 5. If A is a purely $(\phi, 1)$ unrectifiable Suslin subset of R^n such that $\phi(A) < \infty$ and $\phi(W) = 0$ whenever $W \subset A$ and $H^1(W) = 0$, then
\[\phi \times H^{\alpha-1} [A \times B \cap S_{A,1}] = 0. \]

Proof. This is the special case of [B, 4.6] where $G = X = R^n$.

Lemma 6. If A is a Suslin subset of R^n and $\phi(A) < \infty$, then
\[H^\alpha [f_0 (A \times B \cap S_{A,2})] = 0. \]

Proof. This is immediate from [B, 4.7] with $G = X = R^n$.

Lemma 7. Let A be a Suslin subset of R^n with $H^1(A) < \infty$. Then
\[H^\alpha [f_0 (A \times B \cap S_{A,3})] = 0. \]

Proof. Since B is separable it is sufficient to show that
\[H^\alpha [f_0 (A \times B_0 \cap S_{A,3})] = 0 \]
where $B_0 = B \cap U_0$, U_0 being an open subset of R^n with $H^{\alpha-1}(B_0) < \infty$.
Now, by [F1, 2.10.45] and [F1, 2.10.25] we conclude that
\[\int_{R^n} H^n(A \times B_0 \cap f_0^{-1} \{ g \}) \, dH^g \leq C_1 H^n(A \times B_0) < \infty \]
where \(C_1 \) is a positive constant. Thus
\[H^n \left(R^n \cap \left\{ g : H^0(A \times B_0 \cap f_0^{-1} \{ g \}) = \infty \right\} \right) = 0, \]
and it is not difficult to show that
\[f_0[A \times B_0 \cap S_{A,3}] \subset \left\{ g : H^0(A \times B_0 \cap f_0^{-1} \{ g \}) = \infty \right\}. \]

Theorem 1. Suppose \(E \subset R^n \) with \(H^1(E) < \infty \). Then there exists a countably 1-rectifiable Borel subset \(R \) of \(R^n \) such that \((E \sim R) \) is purely \((H^1, 1)\) unrectifiable and
\[(E \sim R) \cap (g + B) = \emptyset \]
for \(H^n \) almost all \(g \in R^n \).

Furthermore, if in addition \(E \) is \(H^1 \) measurable and \(E \cap (g + B) = \emptyset \) for \(H^n \) almost all \(g \in R^n \), then \(H^1(E \cap R) = 0 \), hence \(E \) is purely \((H^1, 1)\) unrectifiable.

Proof. Since \(H^1 \) is Borel regular, we may assume \(E \) to be Borel. By maximizing the finite measure \(H^1 |_E \) on the class of countably 1-rectifiable Borel subsets of \(R^n \) and using [F1, 3.2.14] we obtain a countably 1-rectifiable Borel subset \(R \) of \(R^n \) such that \(A = (E \sim R) \) is purely \((H^1, 1)\) unrectifiable. Applying [B, 4.1 and 4.2] with \(G = X = R^n \) we infer that \(S_{A,1}, S_{A,2}, S_{A,3} \) are Suslin sets. Using Lemmas 4–7 together with [F1, 2.10.25] we easily conclude that
\[H^n \left[f_0(A \times B) \right] = 0 \]
which is equivalent to \(A \cap (g + B) = \emptyset \) for \(H^n \) almost all \(g \in R^n \).

Now let \(E \) be \(H^1 \) measurable with \(E \cap (g + B) = \emptyset \) for \(H^n \) almost all \(g \in R^n \). Observe that by [F1, 3.2.28] we may assume \(R \) to be a subset of a proper 1-dimensional submanifold \(R_0 \) of class 1 of \(R^n \). We may also assume \(0 \in R \) and \(Re_n = T_0(R_0) \) where \(\{e_1, \ldots, e_n\} \) is the standard orthonormal basis for \(T_0(R^n) = R^n \). Let
\[M = S^{n-1} \cap \{ u : u \cdot e_n = 0 \}. \]

Assuming \(B \) is oriented with a unit normal vector field \(v \), let us consider the Gauss map \(\eta : B \to S^{n-1} \) defined by \(\eta(b) = v(b) \in R^n \) for \(b \in B \). Since the Gaussian curvature is nonzero at every point of \(B \), \(\eta \) has nonzero Jacobian at every point. Therefore by the inverse function theorem \(\eta(B) \) is an open subset of \(S^{n-1} \) and thus \(H^{n-1}[\eta(B)] > 0 \). There therefore exists \(b \in B \) at
which \(\eta(b) \not\subset M\). We can assume \(b = 0\); thus \(e_n \not\subset T_0(B)\) and we see that \(R e_n + T_0(B) = \mathbb{R}^n\).

For \(r > 0\) denote \(B_r = B \cap U_n(0, r)\). Since \((E \cap R) \times B_r\) is \(H^n\) measurable application of [F1, 3.2.3] gives

\[
\int_{(E \cap R) \times B_r} J(f_0| R_0 \times B) \, dH^n = \int_{\mathbb{R}^n} H^0\left[\left(\int_0^1 (E \cap R_0) \times B_r \right)^{-1}\{g\}\right] \, dH^n g.
\]

Now the integral on the right is zero by our hypothesis. Moreover, if \(\{u_1, \ldots, u_n-1\}\) is an orthonormal basis of \(T_0(B)\) then

\[
J(f_0| R_0 \times B)(0, 0) = |e_n \wedge u_1 \wedge \cdots \wedge u_{n-1}| > 0.
\]

Consequently, \(H^n((E \cap R) \times B_r) = 0\) for some \(r > 0\), whence we conclude using [F1, 3.2.25] that \(H^1(E \cap R) = 0\).

If \(u \in \mathbb{R}^n\), the \(k\)-dimensional upper density of \(\phi\) at \(u\) is

\[
\theta^{*k}(\phi, u) = \lim \sup_{r \to 0^+} \alpha(k)^{-1} r^{-k} \phi(U_k(u, r))
\]

where \(\alpha(k)\) is the volume of the unit \(k\)-ball \(U_k(0, 1)\).

Theorem 2. Suppose \(W \subset \mathbb{R}^n\), \(\phi(W) < \infty\), \(\phi(S) = 0\) whenever \(S \subset W\) and \(H^1(S) = 0\) and \(\theta^{*k}(\phi \nmid W, u) > 0\) for \(\phi\) almost all \(u \in W\). Then there exists a countably \((\phi, 1)\)-rectifiable and \(\phi\) measurable set \(Q\) such that \((W \sim Q)\) is purely \((\phi, 1)\) unrectifiable and

\[
(W \sim Q) \cap (g + B) = \emptyset
\]

for \(H^n\) almost all \(g \in \mathbb{R}^n\).

Furthermore, if in addition \(W\) is a Borel set such that \(W \cap (g + B) = \emptyset\) for \(H^n\) almost all \(g \in \mathbb{R}^n\), then \(W\) is purely \((\phi, 1)\) unrectifiable.

Proof. Applying Theorem 1 one proceeds in a manner similar to the proof of [B, 5.3].

Bibliography

Department of Mathematics, Bowdoin College, Brunswick, Maine 04011

Department of Mathematics, Indiana University, Bloomington, Indiana 47401

Current address: Department of Mathematical Sciences, Susquehanna University, Selinsgrove, Pennsylvania 17870