BENDER GROUPS AS STANDARD SUBGROUPS

BY

ROBERT L. GRIESS, JR.(1) DAVID R. MASON AND GARY M. SEITZ(2)

To the memory of Vicente Landázuri Narváez
March 12, 1947–January 29, 1976

Abstract. A subgroup X of a finite group G is called *-standard if
X = X/O(X) is quasisimple, Y = C_G(X) is tightly embedded in G and
N_G(X) = N_G(Y). This generalizes the notion of standard subgroups.

Theorem. Let G be a finite group with O(G) = 1. Suppose X is *-standard
in G and X/Z(X) = L_2(2^n), U_3(2^n) or Sz(2^n). Assume X ⊆ G. Then O(X)
= 1 and one of the following holds:

(i) E(G) ≅ X × X.
(ii) X ≅ L_2(2^n) and E(G) ≅ L_2(2^{2n}), U_3(2^n) or L_3(2^n).
(iii) X ≅ U_3(2^n) and E(G) ≅ L_3(2^{2n}).
(iv) X ≅ Sz(2^n) and E(G) ≅ Sp(4, 2^n).
(v) X ≅ L_2(4) and E(G) = M_{12}, A_9, J_1, J_2, A_7, L_2(25), L_3(5) or U_3(5).
(vi) X ≅ Sz(8) and E(G) = Ru (the Rudvalis group).
(vii) X ≅ L_3(4) and E(G) = G_2(3).
(viii) X ≅ SL(2, 5) and G has sectional 2-rank at most 4.

In particular, if G is simple, G = M_{12}, A_9, J_1, J_2, Ru, U_3(5), L_3(5), G_2(5),
or 3D_4(5).

1. Introduction. This paper is concerned with those finite groups G
containing a standard subgroup of Bender type. Actually we deal with a more
general situation as we allow for cores.

A subgroup X of a finite group G is called *-standard if \(\tilde{X} = X/O(X) \)
is quasisimple, \(Y = C_G(\tilde{X}) \) is tightly embedded in G and \(N_G(X) = N_G(Y) \).
A standard subgroup (in the sense of Aschbacher [1]) is clearly *-standard.

We classify finite groups with a *-standard subgroup of Bender type.

Theorem. Let G be a finite group with O(G) = 1. Suppose X is *-standard
in G and \(\tilde{X}/Z(\tilde{X}) = L_2(2^n), U_3(2^n), \) or Sz(2^n). Assume that X ⊆ G. Then
O(X) = 1 and one of the following holds:

(i) E(G) ≅ X × X.
(ii) X ≅ L_2(2^n) and E(G) ≅ L_2(2^{2n}), U_3(2^n), or L_3(2^n).
(iii) X ≅ U_3(2^n) and E(G) ≅ L_3(2^{2n}).
(iv) X ≅ Sz(2^n) and E(G) ≅ Sp(4, 2^n).

Received by the editors July 20, 1976.

(1) Research supported in part by N.S.F. Grant 76-07280.

(2) Research supported in part by N.S.F. Grant 37982X1.
(v) \(X \cong L_2(4) \) and \(E(G) \cong M_{12}, A_9, J_1, J_2, A_7, L_2(25), L_3(5), \) or \(U_3(5). \)
(vi) \(X \cong Sz(8) \) and \(E(G) \cong Ru \) (the Rudvalis group).
(vii) \(X \cong L_2(8) \) and \(E(G) = G_2(3). \)
(viii) \(A^* \cong SL(2, 5), \) \(G \) has sectional 2-rank at most 4, so by [12], \(E(G) \cong U_3(5), L_3(5), G_2(5), \) or \(3D_4(5). \)

In particular, if \(G \) is simple then \(G = M_{12}, A_9, J_1, J_2, Ru, U_3(5), L_3(5), G_2(5), \) or \(3D_4(5). \)

Let \(G \) and \(X \) be as in the main theorem with \(X \not\subset G \) and let \(T_0 \) be a Sylow 2-subgroup of \(Y. \) Then, except in cases (v) and (vi), \(|T_0| = 2 \) and \(T_0 \) induces an outer automorphism on \(E(G). \) This shows that if \(X \) is a standard subgroup and \(m(C_G(Y)) > 1, \) then the conclusion of the main theorem in [3] holds.

The proof of the main theorem involves a “pushing up” procedure. Starting from a Sylow 2-subgroup of \(M = N_G(X), \) we attempt to find a Sylow 2-subgroup of \(G. \) At each stage of the procedure there occurs a certain 2-transitive group and this permutation group either has a regular normal 2-subgroup or a normal subgroup isomorphic to \(L_3(2). \) In all cases except (vi) and (vii) we show that the latter does not occur. When \(E(G) = G_2(3) \) an \(L_3(2) \) does occur at the first step in the process, while for \(E(G) = Ru, \) a factor of \(L_3(2) \) occurs in the second step of the process.

The method of proof eventually reduces us to a situation where we may quote a previous characterization theorem. In particular, we will use the work of Goldschmidt [11] and Gilman and Gorenstein [10] in the identification of \(E(G). \) In the exceptional cases (v), (vi) and (vii) we also use Aschbacher [2], Dempwolff [6], Assa [4], O'Nan [19], and Harada [14].

The paper is organized so that §2 contains preliminary lemmas and §3 basic reductions together with the first step of the “pushing up” process. Then §§4, 5, 6 deal with the cases \(X \cong L_2(2^n), Sz(2^n), U_3(2^n), \) respectively.

2. Preliminaries. The first lemma deals with tightly embedded subgroups in the automorphism group of a Bender group.

(2.1) Let \(X \) be a simple Bender group and \(X < Y < \text{Aut}(X). \) If \(X < F \) and \(F \) is a tightly embedded subgroup of \(Y, \) then one of the following holds:

(i) \(F \cap X \) lies in the normalizer of a Sylow 2-subgroup of \(X, \) has even order, and contains every involution of \(F. \)
(ii) \(F \cap X = 1, |F| = 2, \) and \(F \) induces a field automorphism on \(X. \)
(iii) \(F = (F \cap X) \langle t \rangle, \) where \(|F \cap X| \) is odd, and \(t \) induces a field automorphism of order 2 on \(X \cong L_2(4) \) or \(U_3(2^n). \) If \(X \cong L_2(4), \) then \(F \cap X \cong Z_3, \) and if \(X \cong U_3(2^n), \) \(F \cap X \neq 1 \) is cyclic of order dividing \(2^n + 1 \) and \(F \cap X \) centralizes \(E(C_X(t)) \cong L_2(2^n). \)

PROOF. Suppose \(t \in F \cap X \) is an involution. Then \(t \) is central in a Sylow
2-subgroup U of X, so that U normalizes F and $U(F \cap X)$ is a group. It follows that $U(F \cap X) \leq N_X(U)$ (see (1.6) of [19]) and, consequently, $F \cap X$ fixes a unique point in the usual 2-transitive permutation representation of X. From here we have $F \leq N(U)$ as U is the unique Sylow 2-subgroup of the stabilizer of that point. If $F - (F \cap X)$ contained an involution j, then $C_X(j) \leq N(F)$, whereas j must induce a field automorphism of X and $C_X(j)$ does not contain a normal Sylow 2-subgroup. We have now verified (i).

Assume now that $|F \cap X|$ is odd and t is an involution in F. So t induces a field automorphism on X and, by [22], $X \cong L_2(2^n)$ or $U_3(2^n)$. So $C_X(t) \cong L_2(2^{n/2})$ or $L_2(2^n)$, respectively, and this group normalizes F. Let V be a Sylow 2-subgroup of $C_X(t)$. We may assume $C_X(t) \cong L_2(q_0)$ with $q_0 > 4$, as otherwise the result is trivial. So we may write $F \cap X = \langle C_{F \cap X}(v) : v \in V^* \rangle$. If $V \leq U \leq \text{Syl}_2(X)$, then $C_{F \cap X}(v) \leq N_X(U)$ for each $v \in V^*$. Say $F \cap X \neq 1$. Then from the structure of $N_X(U)$ we conclude that $X \cong U_3(2^n)$, $n > 2$, $F \cap X$ is cyclic of order dividing $2^n + 1$, and $[F \cap X, C_X(t)] = 1$.

In any case $[C_X(t), F] < F \cap X$, and the above implies $[C_X(t), F] = 1$ for $q_0 > 4$. This implies that $F = (F \cap X) \langle t \rangle$, and we have either (ii) or (iii).

The next several lemmas deal with 2-groups and their automorphism groups.

(2.2) Let U be a 2-group of order q^2 and Y a cyclic group of order $q - 1$ acting fixed-point-free on U. Let $V < U$ be Y-invariant and such that U/V and V are elementary and equivalent as $F_2(Y)$-modules. Then U is abelian.

Proof. Higman [17].

(2.3) Let UY be as in (2.2) and suppose that T is a 2-group of order q^2, normalized by UY, $[T, U] \leq T \cap U = V$, and Y is fixed-point-free on T. Then one of the following holds:

(i) $[T, U] = 1$.

(ii) For any $t \in T - V$, $u \in U - V$, $[t, u] \neq 1$.

Proof. This is proved using Lie ring methods. See Dempwolff [6, Lemma 1.1] .

(2.4) Let U be a 2-group and $\langle t \rangle \times Y$ acting on U with t an involution and Y cyclic of order $2^n - 1$. Suppose that Y is regular on $C_U(t)^*$. Then one of the following holds:

(i) U is isomorphic to a Sylow 2-subgroup of $L_2(2^n)$.

(ii) U is isomorphic to a Sylow 2-subgroup of $U_3(2^n)$.

(iii) U is homocyclic of rank n and inverted by t.

(iv) U is homocyclic of rank n and each involution in $U\langle t \rangle - U$ is U-conjugate to t.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(v) U is elementary abelian of order 2^{2n} and each involution in $U \langle t \rangle - U$ is U-conjugate to t.

Proof. This is essentially contained in Finkelstein [8, Lemmas 2.1 and 2.2]. However, instead of (iv) and (v) he simply states that U is abelian and each involution in $U \langle t \rangle - U$ is U-conjugate to t. If U is not homocyclic of rank n, then using the action of Y we have $|\Omega_1(U)| \geq 2^{2n}$. As $|C_U(t)| = 2^n$, this must be an equality. Here the only involutions in $\Omega_1(U) \langle t \rangle$ are in $\Omega_1(U)$ or in $tC_U(t)$ and

$$t^U \cap \Omega_1(U) \langle t \rangle = t^{\Omega_1(U)} = tC_U(t).$$

Consequently, $U = \Omega_1(U)$ and (v) holds.

(2.5) Let $A = A_1 \times A_0$ be an elementary abelian 2-group, $|A_0| = 2$, $A \triangleleft N$, $R = O_2(N)$. Suppose also that N contains a cyclic subgroup K which operates regularly on $(R/A)^\#$ and on $A_1^\#$. If $C_R(A_0) = A$, then $C_N(A_0)$ covers N/R.

Proof. Assume $C_R(A_0) = A$. Then the action of K on A forces $A_1 = Z(R)$. Consequently, if $A_0 = \langle t \rangle$, then $t^N \subseteq A_1t$. On the other hand, the hypotheses force $|R/A| = |A_1|$ and $t^R = A_1t$. The result follows.

The following is a useful result of Goldschmidt.

(2.6) Let $T \in \text{Syl}_2(G)$, W a weakly closed subgroup of T (with respect to G), and A an abelian subgroup of $C_T(W)$, normal in T. Let $\mathcal{S} = \{B \leq T: B \triangleleft A, B \text{ is conjugate to a subgroup of } A\}$ and set $r = \max\{m(B/C_B(W)): B \in \mathcal{S}\}$. Then either

(i) $\Omega_1(A)$ is strongly closed in T (with respect to G); or

(ii) there exists $B \in \mathcal{S}$ such that $m(B) + r > m(A)$; also if $t \in T$ is conjugate to an element of A, then $m([A, t]) < 2r$, with $m[A, t] < r$ provided $B/C_B(W)$ is elementary for each $B \in \mathcal{S}$.

Proof. Theorem 4 of [11].

The following results are the key to the determination of the Sylow 2-subgroup in a group G satisfying the hypotheses of the main theorem.

We consider groups G satisfying the following.

Hypothesis (\(*\). (1) $R \triangleleft G$ is elementary and a Sylow 2-subgroup of a tightly embedded subgroup K of G.

(2) There is a subgroup $X \triangleleft N_G(R)$ such that $X \leq C_G(R)$, and if $U \in \text{Syl}_2(X)$, then U is elementary of order $q = 2^n > 4$, and $N_X(U)/C_X(U)$ is cyclic of order $q-1$ and is regular on $U^\#$.

(3) For $S \in \text{Syl}_2(N_G(R))$ with $U \times R = V \trianglelefteq S$, S/V is faithful on U.

(2.7) Assume that G satisfies Hypothesis (\(*\)). Then one of the following holds:

(a) $S \in \text{Syl}_2(G)$ and V is strongly closed in S.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(b) $S_1 \in \text{Syl}_2(G)$ with $|S_1 : S| = 2$, S_1 acts on S interchanging U and R, and V is strongly closed in S.

(c) Each of the following holds:

(i) $S = \bigcup \{(R^g) : g \in G, R^g \subset V\}$.

(ii) $N(V)$ is 2-transitive of degree q on $\Delta = R^G \cap V$.

(iii) Either $N(V)^A$ contains the Frobenius group of order $q(q - 1)$ as a normal subgroup, or $q = 8$ and $(N(V)^A)' \cong L_3(2)$.

Proof. Suppose that G satisfies Hypothesis (*), and that (a) and (b) are false. First note that we may regard U as F_q with $N_X(U)/C_X(U)$ acting as scalar multiplications and S/V acting as field automorphisms.

We first claim that $S \in \text{Syl}_2(G)$. Otherwise we set $S = T$, $V = W = A$ in (2.6). As $q > 4$, V is weakly closed in S. So the lemma applies and $r < 1$. But for $q > 4$ this is impossible. Consequently, $S \in \text{Syl}_2(G)$.

As V is weakly closed in S, $N_G(S) < N_G(V)$ so V contains more than one conjugate of R. Applying (3.6) of [3] (which is independent of any results in this paper) we have (i) and (ii) provided we can show that $G \cap K = \{R, U\}$. So suppose this latter case occurs. Let $y \in N(S) - S$ with $y^2 \in S$. Then $U = R^y$. Set $S_1 = S(y)$. It is easily checked that V is weakly closed in S_1, and, since $R^G \cap V = \{R, R^y\} = R^{S_1}$, we have $S_1 \in \text{Syl}_2(G)$. Again we appeal to (2.6) to get a contradiction. At this point we have established (i) and (ii).

Now consider the 2-transitive group $N(V)^A$. The stabilizer of R in $N(V)$ will normalize X and, hence, will normalize $N_X(U) = N_X(V \cap X)$. This implies (using (2) of Hypothesis (*)) that $N(V)^A$ satisfies the conditions of Theorem 1.1 of Hering, Kantor and Seitz [16]. We conclude that either $N(V)^A$ has a regular normal subgroup, so that (iii) holds, or $N(V)^A$ contains $\text{PSL}(2, p)$ acting in its usual 2-transitive representation of degree $p + 1$. Suppose the latter case holds. Then $p + 1 = q = 2^a$ and p is a Mersenne prime. If we consider $N(V)^A \cap N(R)$, then this group acts on U inducing a Frobenius group of order $(q-2)(q-1)$. This forces $\frac{1}{2}(q-2)$ to divide n, and hence $n = 3$, completing the proof of (iii).

(2.8) Suppose that G satisfies Hypothesis (*), V is not strongly closed in a Sylow 2-subgroup of G, and that conditions (i)-(iii) of (2.7) hold with $(N(V)^A)$ containing a regular normal subgroup. Let D be a 2-complement of $N_X(U)$. Then there is a Sylow 2-subgroup V_1 of $O_{2^n}(N(V))$ and a 2^r-group D_1, with the following properties:

(a) $SD_1 < N(V)$, $V_1 = \text{Syl}_2(N(V))$, and D_1 induces D on V.

(b) $V_1 = U_1R$ with $U_1 \cap R = 1$, where $U_1 = [D_1, V_1]$.

(c) $U < U_1$, and U_1/U and U are equivalent $F_2(D_1)$-modules.

Proof. The existence of V_1 and D_1 satisfying (a) is easy. By (2.7)(i) U is
characteristic in V and we consider V_1/U. Suppose that $\Omega_1(V_1/U) = V/U$. Then $V = \Omega_1(V_1)$ is weakly closed in V_1S and $V_1S \in \text{Syl}_2(G)$. However, we can now apply (2.6) to conclude that V is strongly closed in V_1S, contradicting our hypothesis.

So $\Omega_1(V_1/U) > V/U$ and, since D_1 is transitive on $(V_1/V)\#$, each coset of V/U in V_1/U contains an involution. Since D centralizes R we must have D_1V_1 centralizing V/U. It follows that V_1/U is elementary. From here (b) follows as well as the first claim in (c). Finally we get the last statement in (c) by letting $r \in R\#$ and noting that the map $u_1U \to [u_1, t]$ is a D_1-homomorphism from U_1/U to U. The proof is complete.

We next make the observation that the above may be repeated. Namely, suppose that Hypothesis (*) holds for G, V is not strongly closed in a Sylow 2-subgroup of G, and $N(V)\alpha$ contains a regular normal subgroup. Choose D_1 and V_1 as in (2.8) and consider $G_1 = G = NG(U)/U$. Then for $g \in G_1$, $Vg \leqslant U\alpha$ implies $Vg = V$ or $Vg \cap V = 1$. With this we can argue as in (2.7) and (2.8).

Suppose now that the process is repeated until at some stage either the induced 2-transitive group does in fact contain $L_3(2)$ as a normal subgroup or the analogue of V in G_m is strongly closed in a Sylow 2-subgroup of G_m and (a) or (b) of (2.7) holds. Assume that the process terminates in the latter way. Then there is a subgroup D_m and a 2-group V_m of G such that $[D_m, V_m] = U_m > U$, R normalizes U_m, $R \cap U_m = 1$, $V_m = U_mR$, each D_m-composition factor of U_m is isomorphic to U and D_m induces D on U. Also $S < N(U_m)$ and $SU_m \in \text{Syl}_2(N_G(V_m\alpha))$.

For $r \in R\#$, $C_{U_m}(r) = N_{U_m}(r) = U$, so U_m satisfies the hypotheses of (2.4). With this notation we can conclude:

(2.9) Let G satisfy Hypothesis (*) and suppose that the above process does not yield the $L_3(2)$ case at any stage. Let U_m be as above. Then one of the following holds:

1. U_m is isomorphic to a Sylow 2-subgroup of $U_3(q)$ or $L_3(q)$ and $U_mS \in \text{Syl}_2(G)$.
2. $U < U_m$ which is homocyclic of rank n and $U_mS \in \text{Syl}_2(G)$.
3. V is strongly closed in a Sylow 2-subgroup of G.
4. $U_m = U$ is elementary of order q^2.

Proof. We may assume $U < U_m$, as otherwise (3) follows as in (2.7). Also we assume that U_m does not satisfy (v) of (2.4), as otherwise (4) holds. Suppose that U_mS is normalized by an element $y \in G - U_mS$ and $y^2 \in U_mS$. We first show that y normalizes U. If $S = RU$, then $U = Z(U_mS)$ and this is clear. Suppose $S > RU$. If $S' < U$, then S' contains an element fused to an element in $R\#$. In this case $U = C_{U_mS}((U_mS))$ so y normalizes U as claimed. So we suppose that $S' < U$ and, hence, $(U_mS)' < U_m$. If U_m
BENDER GROUPS

satisfies (i) or (ii) of (2.4) then \((U_mS)' > [U_m, R]\) which is homocyclic of order \(2^{2n}\) and of rank \(n\). So here \(U = \Omega_i((U_mS)')\) if \((U_mS)' = [U_m, R]\) and \(U = Z((U_mS)')\) if \((U_mS)' > [U_m, R]\). Either way \(y \in N(U)\). If \(U_m\) satisfies (iii) or (iv) of (2.4), then \((U_mS)' > U_{m-1}\), so \(U = \Omega_i((U_mS)')\) is normalized by \(y\). So in all cases the claim holds.

In particular, \(y\) normalizes \(C_{U_mS}(U) = U_mR\). But then \(y\) normalizes \((U_mR)' = U_{m-1}\). Hence \(U_mS \leq \text{Syl}_2(N_G(U_{m-1}))\) so that we are in case (b) of (2.7). But then (4) holds. Thus we may assume \(U_mS \in \text{Syl}_2(G)\). We complete the proof by using (2.4) to get the structure of \(U_m\).

3. Initial reductions. Let \(G\) be a finite group having a \(*\)-standard subgroup \(M_1\) such that \(\tilde{M}_1\) is a Bender group and the conclusions of the main theorem are violated. Choose \(|G|\) minimal and \(M_1\) minimal in the group \(G\). Let \(M = N_G(M_1)\) and \(M_0 = C_M(M_1/O(M_1))\).

Choose \(T \in \text{Syl}_2(M)\) and set \(T_i = T \cap M_i\), \(i = 0, 1\). Then \(T = T_1T_0T_3\) where \(T_3\) is cyclic. We set \(q = |\Omega_i(T_1)|\), so that \(q = 2^m\) and \(\tilde{M}_1 \cong L_2(2^m), Sz(2^m), \text{ or } U_3(2^m)\), unless \(M_1\) is a perfect central extension of \(Sz(8)\), when we set \(q = 8, m = 3, \text{ or } M_1 \cong SL(2, 5)\), when we set \(q = 4, m = 2\). Let \(K_1\) be a 2-complement in \(N_{M_1}(T_0T_1)\) and \(K = K_1^{-1}.\) Finally set \(A_i = \Omega_i(T_1)\) and \(A = A_1A_0\).

The above notation will be maintained throughout the rest of the paper.

(3.1) \(M_1 = \langle C_{M_1}(t): t \in \text{Inv}(T_0)\rangle\).

Proof. \(C_{M_1}(T_0)\) covers \(M_1/O(M_1)\). So if \(m(T_0) > 1\) the result is clear. If \(m(T_0) = 1\), then it is easy to check that \(C_{M_1}(\Omega_i(T_0))\) is a \(*\)-standard subgroup, so by minimality of \(M_1\) we again have the result.

(3.2) \(F(G) = 1\).

Proof. By hypothesis we have \(O(G) = 1\). Suppose \(O_2(G) \neq 1\). For each involution \(t \in T_0\), the tight embedding property implies that \(C_{O_2(G)}(t)\) centralizes \(M_1\). Now (3.1) and the \(P \times Q\) lemma imply that \(\tilde{M}_1 \leq C_G(O_2(G))\). But then \(O_2(G) \leq T_0\), so \(G \leq N(O_2(G)) \leq N(M_1)\) and \(m_1 \leq G\), a contradiction.

(3.3) There does not exist a normal subgroup \(1 < N \trianglelefteq G\) such that \(N\) has Sylow 2-subgroups of class at most 2.

Proof. If such an \(N\) exists, then using (3.2) and the result of Gilman and Gorenstein [10], the structure of \(N\) is known. Consideration of the action of \(T_0\) on \(E(N)\) gives a contradiction.

Similarly, we have

(3.4) \(G\) does not contain a normal subgroup \(1 < N \trianglelefteq G\) such that a Sylow
2-subgroup S of N contains an abelian subgroup A with A strongly closed in S with respect to N.

Proof. Use (3.2) and Goldschmidt's theorem [11].

(3.5) (a) $G = \langle T_0^G \rangle$.
(b) $|G : O^2(G)| < 2$. If the index is 2, then $G = O^2(G)T_0$ and $T_0 \cap O^2(G) = 1$. In particular, $|T_0| = 2$ in this case.

Proof. Set $G_0 = \langle T_0^G \rangle$ and suppose $G_0 < G$. If $M_1 \cap G_0 \nleq Z^*(M_1)$, then $M_1 \cap G_0$ is a *-standard subgroup in N and, by minimality of G, the structure of $E(G_0)$ is known, from which we have a contradiction.

Suppose that $M_1 \cap G_0 \nleq Z^*(M_1)$. We claim that $T_0 \in \text{Syl}_2(G_0)$. Otherwise, let $X > T_0$ be a 2-subgroup of G_0 normalizing T_0. Then $X < N(M_1)$, so $[M_1, X] \nleq M_1 \cap G_0 \nleq Z^*(M_1)$. But this forces $X < M_0$ impossible. Consequently, $T_0 \in \text{Syl}_2(G_0)$ and $G = G_0N_G(T_0) = G_0M$. It follows that $M \cap G_0$ is strongly embedded in G_0, so using Bender's theorem [5] we have a contradiction. This proves (a).

For (b) use the minimality of G.

(3.6) There exists $g \in G - M$ such that $1 \neq R = T_0^g \cap M < T$.
(i) $R \cap T_0 = 1$.
(ii) If $m(T_0) > 1$, then g can be chosen such that $R = T_0^g$.
(iii) If $|R| > 2$, then $\Omega_1(R) \leq \Omega_1(T_1)T_0$.
(iv) If $m(T_0) > 1$, then T_0 is elementary abelian.
(v) If $m(T_0) > 3$, then $R = T_0^g$ for all such g.

Proof. If $m(T_0) = 1$, then we apply (3.2) and the Z^*-theorem of Glau-berman. Also, in any case, (i) follows from the tight embedding property. We now assume that $m(T_0) > 1$.

At this point we apply the work of Aschbacher [1]. Theorems 1 and 3 of [1] apply directly, while the proof of Theorem 2 carries over with just one change. Namely at a certain point Aschbacher uses $[M_0, M_0^g] \neq 1$ for any $g \in G$ and his Hypotheses II to conclude that (iii) holds. However, in our case, (iii) follows as in the proof of (2.1). So we may apply the theorems in [1] to obtain (3.6) in the case $m(T_0) > 1$.

(3.7) Suppose that $m(T_0) > 1$. Then:
(i) There is no subgroup $G_0 < G$ such that $T < G_0$, $M_1 = O(M_1)(M_1 \cap G_0)$, and $M_1 \cap G_0$ is a *-standard subgroup of G_0, but $M_1 \cap G_0 \nleq G_0$.
(ii) $O(M) = 1$.

Proof. Suppose that $m(T_0) > 1$. First we show that (i) implies (ii). So assume (i) to hold, but (ii) false. Let p be a prime divisor of $|O(M)|$ and P_0 a T-invariant Sylow p-subgroup of $O(M)$. Extend P_0 to a T-invariant Sylow
p-subgroup, P, of $M_0 \cap C(T_0T_1O(M)/O(M))$. As $[M_1,P] < [M_1,M_0] < O(M)$, $N_{M_1}(P)$ covers \tilde{M}_1.

Let $g \in G - M$ be as in (3.6)(ii). Since $P = \langle C_T(t): t \in (T_0^g)^* \rangle$, $P < M^g$.

It is easily checked that if $\tilde{M}_1 \neq L_2(4)$, then T_1T_0/T_0 is the unique group of its isomorphism type in T/T_0. Applying this to T^g/T_0^g we have $T_1T_0 \simeq (T_1^gT_0^g)^{\tilde{M}_1} \times \tilde{M}_1^g$ and the structure of M_1^g forces $P < M_1^g$. If $\tilde{M}_1 \simeq L_2(4)$ or $\text{SL}(2,5)$, this also holds, so in all cases $N_{M_1}(P)$ covers \tilde{M}_1^g. Setting $G_0 = N_G(P)$ it is easily checked that $M_1 \cap G_0$ is *-standard in G_0. So it suffices to prove (i).

We apply induction to $G_0/O(G_0)$. Since $m(T_0) > 1$, we must be in case (v) or (vi) of the main theorem. Let $T \subseteq S \in \text{Syl}_2(G_0)$, $S_0 \in \text{Syl}_2(N_G(S))$. First, assume $S \subseteq S_0$.

If $G_0/O(G_0) \simeq A_9$ or S_9, then $T_0 \sim T_1$ in G_0 and $Z_2(S)$ is a klein group which we may take to be $\langle t' \rangle \times \langle t^s \rangle$ for $t \in T_0$ and $s \in S$. As $tt^s \in Z(S)$, $S_0 = SC_{S_0}(t)$, a contradiction.

Suppose that $G_0/O(G_0) \simeq J_2$ or $\text{Aut}(J_2)$. Again we check centralizers to see that for each $t \in T_0^g$, $tS_0 \subseteq tG_0$. Using the results in [13] we see that S contains precisely 8 conjugates of T_0 and $tG_0 \cap S$ is contained in the union of those conjugates. As S is transitive on $T_0^g \cap S$, the tight embedding property gives $S_0 \subseteq SN(T_0)$, and again we have a contradiction.

Next suppose that $G_0 = G_0/O(G_0) \simeq J_2$. Then $T_0 \cap G_0' = \langle t' \rangle$ for some involution t and $C_{G_0}(t) \simeq S_5 \times \langle t' \rangle$, modulo $O(G_0)$. We have $S > T$ and T contains a Sylow 2-subgroup of $C_{G_0}(t)$, which has the form $T_1\langle a \rangle \times \langle t \rangle$ for some involution a. Set $A = \langle a \rangle \times Z(T_1\langle a \rangle) \times \langle t \rangle$. Then by Theorem 2 of Harada [15], G is of known type. In particular, $G_0O(G) = G$ and certainly $S \in \text{Syl}_2(G)$.

Finally we assume that $G_0 = G_0/O(G_0) \simeq Ru$. Here we use information about S available in Dempwolff [6]. In his notation $S = V$ and V contains a normal subgroup W such that $F = W' = A_1$ and $W/A_1 = W/F$ is elementary of order 2^g on which $N_{G_0}(\overline{W}/F) \simeq \text{GL}(3,2)$ acts irreducibly. Checking centralizers we see that G_0 controls the fusion of its involution so that S_0 cannot fuse an involution in T_0^g into another G_0-class of involutions.

Using the argument in Lemma 2.2 of [6] we conclude that $S_0 < N_G(W)$. So S_0 permutes the involutions in $W - W' = W - F$. However, Lemmas 2.7 and 2.8 of [6] show that S is transitive on $T_0^g \cap W$. Consequently, $S_0 = SN_{S_0}(T_0) = S$, a contradiction.

Now that $S \in \text{Syl}_2(G)$ we can obtain a contradiction by quoting an appropriate characterization theorem giving the structure of $G/O(G)$. For all cases except $G_0/O(G_0) \simeq Ru$ we can use the result of Gorenstein and Harada [12]. In the remaining case we quote the recent result of Assa [4]. At this point (3.7) is proved.
(3.8) $\tilde{M}_1 \cong L_2(4)$ or $\text{SL}(2, 5)$.

Proof. If $m(T_0) = 1$ and $\tilde{M}_1 \cong L_2(4)$, we can quote Theorem 2 of Harada [15] to get a contradiction. If $m(T_0) = 1$ and $\tilde{M}_1 \cong \text{SL}(2, 5)$ let $\langle r \rangle = \Omega_1(T_0)$. Then it is easily seen that r is a 2-central involution in G. Since $C(t)$ has Sylow 2-subgroups of sectional rank at most 4 we again have a contradiction.

Suppose $m(T_0) > 1$. By (3.7) $O(M) = 1$, so $O(M_1) = 1$. If M_1 is a standard subgroup of G, then we quote Aschbacher [2], while if M_1 is not standard it is because $E(M_0)$ is conjugate to M_1 and $E(M) = M_1 \times M_1^g$ for some $g \in G$. In particular, T_0 is a klein group and we can quote Smith [21].

(3.9) $T_0 \cap T_1 = 1$.

Proof. Suppose false. Then $M_1/O(M_1)$ is a perfect central extension of $S_7(8)$ by Z_2 or $Z_2 \times Z_2$. First suppose that $m(T_0) = 1$. Here $T = T_0T_1$ and $\Omega_1(T) = \Omega_1(T_0)$ (as $T_0 = \Omega_1(T_0) < T_1$ and $\Omega_1(T_0/T_0) = \Omega_1(T_0/T_0)$). Also $[T, \Omega_1(T)] = T_0 \cap T_1$. Consequently, $N_G(T) < N_G(T_0 \cap T_1)$ and it follows that $T \in \text{Syl}_2(G)$. But then T_1 is a strongly closed subgroup of T, contradicting (3.4).

If $m(T_0) > 1$, then T_0 is elementary abelian by (3.6)(iv). Here $\Omega_1(T) = \Omega_1(T_1)T_0$ and the above argument again gives a contradiction.

(3.10) $T \not\subseteq \text{Syl}_2(G)$.

Proof. If $m(T_0) > 1$, then T_0 is elementary by (3.6), so in all cases $\Omega_1(T_0T_1) = \Omega_1(Z(T_0T_1))$. Suppose that $t \in T - T_0T_1$ is a conjugate of an involution in T_0. Then $\tilde{M}_1 = U_2(q)$ or $L_2(q)$ and $C_{\tilde{M}}(t) = L_2(q)$ or $L_2(\sqrt{q})$, respectively. Moreover, all involutions in $C_{\tilde{M}}(t)$ are fused to t. Clearly, $C_{\tilde{M}}(t') < C_G(t')$ and, by (3.8), $C_{\tilde{M}}(t)$ is simple so $C_{\tilde{M}}(t')$ covers $C_{\tilde{M}}(t)$. Now we conclude that some conjugate t^g of t induces a nontrivial inner automorphism of M_1.

Assume that $T \in \text{Syl}_2(G)$. If $\tilde{M}_1 \cong L_2(q)$ we use (3.6)(iv) and then (2.6) to conclude that $\Omega_1(T_0T_1) = T_1\Omega_1(T_0)$ is strongly closed in T. This contradicts (3.4). If $\tilde{M}_1 \cong S_7(9)$, then $T = T_1 \times T_0$ and again $\Omega_1(T)$ is strongly closed and abelian.

Suppose that $\tilde{M}_1 \cong U_3(q)$ and let t^g be as in the first paragraph. The group M^g contains $C_{\tilde{M}}(t^g)$ and $C_{\tilde{M}}/O(M_1^g)$ has order $(q + 1)q^3$ or $\frac{1}{2}(q + 1)q^3$. A 2-complement in $N(T_1) \cap C_{\tilde{M}}(t^g)$ acts fixed-point-freely on $T_1/\Phi(T_1)$, and from the structure of M^g we conclude $\Omega_1(T_0) \not\subseteq M^g$.

In particular, (3.9) implies that $t^g \not\subseteq T_1$. We may assume that $\Omega_1(T_0^g) < T$ (this is clear if $m(T_0) = 1$, and if $m(T_0) > 1$ we use (3.6)(ii) and (2.1)). Let $\Delta = \Omega_1(T_0)G \cap V$. Since $N_{\tilde{M}}(V)$ contains a cyclic group acting regularly on $\Omega_1(T_1)$ and since $\Delta \not\subseteq \langle \Omega_1(T_0), \Omega_1(T_1) \rangle$, we argue as in (2.7) to conclude that
$N(V)^A$ is 2-transitive of degree q. But $T_0 T_1 \leq C(V)$ and $|T : T_0 T_1| < n < q$. This is a contradiction.

(3.11) Let $T < S \in \text{Syl}_2(G)$. Then $N_S(T) < N_G(T_0 T_0)$.

Proof. Suppose $\tilde{M}_1 \cong U_3(q)$. Then from (3.6) and (3.8) it is easy to see that $\Omega_1(T_0 T_1)$ is weakly closed in T with respect to T and $T_0 = C_T(\Omega_1(T_0 T_1))$. If $\tilde{M}_1 \cong U_3(q)$, then we may assume $T > T_1 T_0$. In this case $\Omega_1(Z(\Omega_1(T'))) = J > A_1$ is normalized by $N_S(T)$, and since $T_1 T_0 / J$ is the unique group of its isomorphism type in T / J, we have the result.

(3.12) T_0 is elementary abelian.

Proof. By (3.6)(iv) we may assume that $m(T_0) = 1$. Choose $y \in N_S(T) - T$. By (3.11) $y \in N(T_1 T_0)$. Also $T_0 \cap T_0 = 1$ and $T_0 \cong T_1$. The Krull-Schmidt theorem implies that $T_0 < T_0 Z(T_1)$, and the result follows from the fact that $Z(T_1)$ is elementary.

(3.13) Let $L = N_G(A)$ and $A = \{A_0^g : g \in G, A_0^g \leq A\}$ is a disjoint union of q conjugates of A_0.

(i) $A - A_1 = \bigcup \{(A_0^g)^x : x \in G, A_0^g \leq A\}$ is a disjoint union of q conjugates of A_0.

(ii) A_1 is strongly closed in A with respect to G.

(iii) L induces a 2-transitive group on A.

Proof. This follows exactly as in the proof of (2.7) once we show $\Delta \neq \{A_0, A_1\}$. Suppose that, in fact, $\Delta = \{A_0, A_1\}$ and let $y \in N_S(T) - T$ for $T < S \in \text{Syl}_2(G)$ (here we use (3.10)). By (3.11) $y \in N(T_1 T_0) < N_A(T)$ as $y \notin T$ we must have $A_0^y = A_1$. If $M_1 \cong L_2(q)$, then $A_1 < (T_1 T_0)'$ and $A_0 < (T_1 T_0)'$, impossible. Therefore $\tilde{M}_1 \cong L_2(q)$. But now G satisfies the conditions of Hypothesis (\ast) of §2 ($R = T_0, K = M_0, X = C_{M_0}(T_0), U = T_1$). So (2.7) implies that A is strongly closed in a Sylow 2-subgroup of G, contradicting (3.4).

(3.14) Let $L = N_G(A)$ be as in (3.13).

(i) L^A contains $O_2(L^A)$ as a regular normal subgroup of order q.

(ii) $O_2(L^A) K_1^A \leq L^A$ is a 2-transitive Frobenius group.

Proof. It suffices to show that L^A contains a regular normal subgroup. Here we use the proof of (2.7)(iii). If L^A does not contain a regular normal subgroup then we must have $(L^A)' \cong L_2(2)$ and $q = 8$. So $M \cong L_2(8), S_8(8)$, or $U_3(8)$. Since L has a 7-element acting nontrivially on A_1, L induces $L_2(2)$ on A_1.

Let $T < S_1 \in \text{Syl}_2(N_G(A))$. Then S_1 contains an element x inducing an automorphism of order 4 on A and satisfying $C_A(x) < A_1$. From the Jordan form of x acting on A we conclude that $|A_0| = 2$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
First suppose that $\tilde{M}_1 \cong S_2(8)$. The stabilizer J in L of an element $yA \in (T/A)^*$ induces S_4 on A_1. But also J must stabilize $[T, y]$, a Klein group in A_1 and y^2, an involution in A_1. This is impossible.

Next suppose that $\tilde{M}_1 \cong U_3(8)$. We argue as follows, referring the reader to p. 17 of [9] for the structure of T_1. Let $z \in C_{A_1}(x^2) \cap [A_1, x^2]$. The square roots in T_0T_1 of z form 9 cosets x_iA_i, $i = 1, \ldots, 9$, permuted by x. Hence one coset at least, say x_1A_1, is fixed by x. Then, since $A < Z(T_0T_1)$, x acts on the 4-element set $\{[x_i, x_j]: i = 2, \ldots, 9\}$, which an easy computation shows is not the case.

Now assume that $\tilde{M}_1 \cong U_3(8)$. Here $T = T_0T_1$ is elementary of order 2^4. We claim that $S_1 \in Syl_2(G)$. For suppose $g \in N(S_1) - S_1$ with $g^2 \in S_1$. Then $A^g < S_1$, but $A \neq A^g$. As A^g centralizes $A \cap A^g$, $|A \cap A^g| = 4$ and $A \cap A^g < A_1$. So there is a conjugate $A_0^g = \langle t^z \rangle \subseteq S_1 - T$. We may assume $t^z A < Z(S_1/A_1)$. Then t^z has two nontrivial Jordan blocks on A and, hence, $C_{S_1}(t^z)$ covers S_1/A_1. This forces $C_{S_1}(t^z)$ to involve D_8, a contradiction. This proves the claim.

Finally we observe that S_1 has sectional 2-rank 4 so that the theorem of Gorenstein and Harada [12] gives a contradiction.

We remark that the only groups G in the main theorem satisfying $(L^4)' \cong L_3(2)$ are those with $G' \cong G_2(3)$.

Notation (3.15). As in (2.8) we now have the existence of certain subgroups of L. Let L_0 be the subgroup of L stabilizing each element of Δ. Then either $T_1T_0 \in Syl_2(L_0)$ or $\tilde{M}_1 = U_3(q)$, $|T \cap L_0: T_0T_1| = 2$, and $T \cap L_0 \in Syl_2(L_0)$. Choose $R > T \cap L_0$, a 2-subgroup of L so that R^A is the regular normal subgroup in L^A. We may assume that $T < N(R)$. Except in the case $T \cap L_0 > T_0T_1$, we may choose a subgroup $D_1 < N(R)$ of odd order with D_1 inducing K_1 on T_0T_1 and $T_3 < N(D_1)$. In those cases set $R_1 = R$. If $T \cap L_0 > T_0T_1$, then $K < L_0$ and K induces a cyclic group of order $q + 1$ or $\frac{1}{3}(q + 1)$ on T_0T_1 normalized by $\langle R, K_1 \rangle$. From here it is easy to see that R/T_0T_1 is elementary and that R contains a subgroup R_1 of index 2 such that $R_1 > T_0T_1$, R_1 covers $R/R \cap L_0$, and K_1 normalizes R_1 module $O(L_0)$. So here we choose $D_1 < N(R_1)$ of odd order with D_1 inducing K_1 on T_0T_1 and $T_3 < N(D_1)$.

Set $R_0 = [R_1, D_1]$.

(3.16) (i) $T_1 \trianglelefteq R$ and $[T_1, R_1] \trianglelefteq A_1$.
(ii) $R_0 \cap A_0 = 1$ and $R_0A_0T_3 \subseteq Syl_2(L)$.
(iii) $R_0 = T_1R_2$ with $T_1 \cap R_2 = A_1$, R_2 abelian, and R_2/A_1 and A_1 are isomorphic $F_2(D_1)$-modules.

PROOF. We have $A \triangleleft R$, $[A, R] \trianglelefteq A_1$ and $T_1T_0 \triangleleft R$ (as $T_1T_0 = R_1 \cap$
C(A) and R ⊊ R_1 T_3). First we show that T_A ⊊ R. If T_A = A_1, this follows from (3.13)(ii). Suppose that \(\tilde{M}_1 \cong U_3(q) \). As \(q > 2 \), \(K \cong C(A) \) and \([K, T_1] = T_1 \). It follows that if \(g \in R, A_T^g \cong A, T_1 \cong M_f \). So \(T_1 = T_0 T_1 \cap M_f \) and \(g \in N(T_0) \). In particular, \(R \cong N(T_0) \). Now suppose that \(\tilde{M}_1 \cong Sz(q) \). If \(R/A \) is not elementary abelian, then since \(D_1 \) is transitive on \((R/T)^# \) and on \((T/A)^# \), we have \(\Omega_4(R/A) = T/A \). But then \(\Omega_4(R) = A, R \in \text{Syl}_2(G) \), A is strongly closed in R, and we contradict (3.4). So \(R/A \) is elementary abelian.

Let \(X/A \) be a \(D_1 \)-invariant complement to \(T_0 T_1 / A \) in \(R/A \). We use the action of \(D_1 \) to see that \(X/A_1 \) is elementary abelian. Indeed, if \(X/A_1 \) is not abelian, choose \(A_2 / A_1 \) a hyperplane in \(A/A_1 \) with \(X' < A_2 \). Then since \(D_1 \) is irreducible on \(X/A, X/A_2 \) is extraspecial, contradicting the fact that \(n \) is odd.

So \(X/A \) is a \(J_1 \)-invariant complement to \(T_0 T_1 / A \) in \(R/A \). We use the action of \(D_1 \) to see that \(X/A_1 \) is elementary abelian. Indeed, if \(X/A_1 \) is not abelian, choose \(a \in A \) as \(R/A \) is abelian. Since \(t \) centralizes \(x^2 \in A_1 \), we must have \(x^2 = (xa)^2 = x^2a^2[x, a] = x^2[x, a] \). Consequently, \([x, a] = 1 \) and, as \(x \in X \), \(A \), this forces \(a \in A_1 \). We conclude that \([T_1, X] < A_1 \) and \(T_1 < R \) as claimed.

Now we complete the proof of (i); that is, we show \([T_1, R_1] < A_1 \). If \(T_1 = A_1 \) this is obvious. In the other cases we have the result since \(D_1 \) acts irreducibly on \(T_0 T_1 / A_1 \), and \(T_0 T_1 / A_1 \cap Z(R/A_1) \neq 1 \).

A previous argument shows that \(R_1 / A \) is elementary if \(\tilde{M}_1 \cong Sz(q) \). We claim that \(R_1 / A \) is elementary in all cases. If not, then as before \(\Omega_4(R_1 / A) = T_0 T_1 / A \) and \(\Omega_4(R_1) = A \). If \(\tilde{M}_1 \cong L_2(q) \) it is then easy to see that \(A \) is weakly closed in \(RT_2, RT_3 \in \text{Syl}_2(G) \), and by (2.6) (using \(q > 4 \) \(A \) is strongly closed in \(RT_3 \). This contradicts (3.4). Now assume that \(\tilde{M}_1 \cong U_3(q) \) and let \(D = D_1 \). Then \(D < L_0 \) and, as \(q > 2 \), \([D, T_1] = T_1 \). But also \([D, R_1] < T_0 T_1 \). Consequently, \([R_1, D, R_1] < [T_0 T_1, R_1] < A \) and \([D, R_1, R_1] < A \). By the 3-subgroup lemma \([R_1, R_1, D] < A \) and so \(R_1 < A \). That is, \(R_1 / A \) is abelian and, since \(D_1 \) acts irreducibly on \(T_0 T_1 / A_1 \), we conclude that \(\Phi(R_1 / A) = 1 \) and \(R_1 / A \) is elementary.

Choose a \(D_1 \)-invariant complement \(X/A \) to \(T_0 T_1 / A \) in \(R_1 / A \). We next claim that \(X/A_1 \) is elementary abelian. If not then there is an element \(x \in X \) with \(x^2 \in A - A_1 \). Then \(x^2 \) is \(R_1 \)-conjugate to an involution in \(A_0 \). Therefore, \(x \) is \(R_1 \)-conjugate to a member of \(T \), a contradiction.

We now set \(R_2 = [D_1, X] \). Then \(A_1 \leq R_2 \) and \(R_2 \cap A_0 = 1 \). As \(R_1 / A_1 \) is the direct sum of \(T_1 / A, R_2 / A_1 \), and \(A / A_1 \), we have \(R_0 = T_1 R_2 \). This proves (ii) and the first two parts of (iii). If \(t \in A_0^# \) then the map \(r_2 A_1 \to [r_2, t] \) is a \(D_1 \)-isomorphism from \(R_2 / A_1 \) to \(A_1 \). Apply (2.2) to complete the proof of (3.16).

At this stage we have begun the process of building a Sylow 2-subgroup of \(G \). We will complete the proof of the main theorem by taking the cases \(\tilde{M}_1 \cong L_2(q), Sz(q), U_3(q) \) separately.
4. $\mathcal{M}_1 \cong L_2(2)$. In this section we assume that $\mathcal{M}_1 \cong L_2(q)$. Recall that we are after a contradiction and that, by (3.8), $q > 4$.

For this case the group G satisfies the conditions of (\ast) in §2 (setting $R = A_0$, $K = M_0$, $U = A_1$). We could immediately apply (2.9) provided we knew that at each stage of the process described in §2 the 2-transitive group did not involve $L_3(2)$. So we first prove this.

Suppose that at some stage $L_3(2)$ does occur. Then $\mathcal{M}_1 \cong L_2(8)$ and $T = T_0 \times T_1$. By (3.14) L^A does contain a regular normal subgroup, so that the difficulty occurs at stage $m + 1$ of the inductive process, where $m > 1$. Consequently, there is a subgroup $U_m > A_1$ and a subgroup of odd order D_m, such that $D_m A_0 < N(U_m)$, D_m acts on A, A_0 as does D_1, each D_m-composition factor of U_m is isomorphic to A_0, and if $U_{m-1} = [U_m, A_0]$, then $N = N_G(U_{m-1}) \cap N_G(U_m A_0)$ induces $L_3(2)$ on $U_m A_0 / U_{m-1}$, 2-transitive on $\Omega = (A_0 U_{m-1} / U_{m-1})^N$. Also U_m is normal in G (see (2.7)).

We claim that U_m is homocyclic of rank n, $|A_0| = 2$, and A_0 inverts U_m. To see this, note that for $t \in A_0^\#$, t^N contains elements in $U_m t$. So t inverts elements of U_m, and, using the action of D_m, t inverts an element of each coset of U_{m-1} in U_m. But now (2.4) implies that U_m is abelian, so t inverts U_m and U_m is homocyclic of rank n. As $t \in A_0^\#$ was arbitrary, $A_0 = \langle t \rangle$ and we have the claim.

Next note that $t U_m = t^N$ and the Thompson transfer lemma implies that $t \notin O^2(N)$. In particular, $O^2(N)$ has index 2 in N, is complemented by $\langle t \rangle$, and a Sylow 2-subgroup of N has the form $S = S_0 \langle t \rangle$, where $S_0 \cap \langle t \rangle = 1$ and $U_m < S_0 \in Syl_2(O^2(N))$. Then $S_0 / U_m \cong D_8$. As $U_m > A_1$ has exponent at least 4, U_m is weakly closed in S, and since $U_m A_0 = C_S(\langle t \rangle)$, $S \in Syl_2(G)$. In addition it is clear that t does not fuse into S_0 so by transfer G contains a normal subgroup G_0 of index 2. Clearly, $S_0 \in Syl_2(G_0)$. At this point we have the structure of G_0 by appealing to [15] or to [19]. In either case we have a contradiction.

We may now apply (2.9) to get the subgroup $U_m > A_1$. Here $S = A_1 A_0 T_3 \in Syl_2(M)$. By (3.13), (2.9)(3) does not hold.

(4.1) U_m is not isomorphic to a Sylow 2-subgroup of $U_3(q)$ or $L_5(q)$.

Proof. Deny. Then U_{m-1} is homocyclic of exponent 4 and, since for each $t \in A_0^\#$, $t^{U_m} = U_{m-1} t$, we have t inverting U_{m-1}. In particular, $A_0 = \langle t \rangle$. By (2.9) $U_m S = U_m A_0 T_3 \in Syl_2(G)$. Now $A_0 T_3$ is abelian, and if $A_0 T_3$ is cyclic, then we transfer out $A_0 T_3$ and contradict (3.3). So we may assume that $T_3 A_0 = T_3 \times A_0$ and $T_3 \neq 1$. Each involution in $T_3 U_m - U_m$ centralizes a homocyclic subgroup of order $q = 4^{n/2}$ and rank $n/2$ in U_{m-1}. Each involution in U_m has centralizer of order at least q^2. So $t^G \cap U_m T_3 = \emptyset$ and G contains a normal subgroup G_0 of index 2.
By (3.3) and transfer we may assume that $x^G_0 \cap U_m \neq \emptyset$, where $\langle x \rangle = \Omega_i(T_3)$. Say $y = x^g \in U_m$. Then either $y \in A_1$ and $U_m \leq C(y)$ or $y \in U_m - A_1$, U_m is isomorphic to a Sylow 2-subgroup of $L_3(q)$, and $C_{U_m}(y)$ contains an elementary abelian subgroup of order q^2. However, $t \not\sim tx$ (for the same reason that $t \not\sim x$), and it follows that $B = C_{M}(x)/\langle x \rangle$ is a \ast-standard subgroup in $C_G(x)/\langle x \rangle$ with $C(B/O(B)) \cap C_G(x)$ having $\langle t, x \rangle/\langle x \rangle$ as Sylow 2-subgroup. From the minimality of G we have a contradiction.

(4.2) U_m is not homocyclic.

Proof. Suppose U_m is homocyclic. Then (2.9)(2) implies that $A_1 < U_m$ and $S = U_mA_0T_3 \in \text{Syl}_2(G)$. So $q > 8$ by (3.8). It is now easy to show that U_m is weakly closed in S.

We apply (2.6) to the weakly closed subgroup U_m of S and its subgroup A_1 (so $T = S$, $W = U_m$, $A = A_1$). Let r be the integer given in (2.6).

As $U_mA_0 < C(A_1)$, $r < 1$. But from (2.6)(ii) and the fact that $q > 4$ we see that, in fact, $r = 0$. By (3.4) A_1 is not strongly closed in S, so there is a conjugate $x \in U_m(A_0^\#)$ of an involution of A_1. Say $t \in A_0^\#$ and $x \in U_m t$.

Then $x \not\in U_{m-1}t = tU_m$ and so t must invert U_m. As $C_{A_0}(U_m) = 1$, $U_m t$ is the unique coset of U_m in $U_m A_0^\#$ that contains involutions not in A. Also we note that each element of $U_m t - U_{m-1}t$ is conjugate to x.

Suppose $U_m A_0 \in \text{Syl}_2(G)$. If U_m has exponent 4, then $U_m A_0$ has class 2, against (3.3). If U_m has exponent greater than 4, then $U_{m-1}A_0^\#$ consists of involutions so each element of $A_0^\#$ inverts U_{m-1}, forcing $|A_0^\#| = 2$. But now we transfer out A_0 from G_0 and again contradict (3.3).

Thus we may choose $x \in T_3 - U_m A_0$ with $x^2 \in A_0$. x clearly has no conjugates in $U_m A_0$, and if $x^2 \not= 1$ then x^2 is an involution in A_0 and so has no conjugate in $S - U_m A_0$ (check centralizers). Hence $x \not\in O^2(G)$ by transfer. By (3.5)(b), $|A_0| = 2$, x is an involution, and $xt \in O^2(G)$, where $A_0 = \langle t \rangle$. But we can transfer out xt also, a contradiction.

(4.3) U_m is not elementary abelian of order q^2.

Proof. Suppose that U_m is elementary abelian of order q^2. Then $U_m = R_2$ and, for $a \in A_0^\#$, $aR_2 - aA_1$ contains no involutions. So $A = \langle A_0^\# \cap R \rangle$ and $N_G(R) < N_G(A)$. Let $S \in \text{Syl}_2(G)$ with $RT_3 \leq S$. Then $N_S(R) = RT_3$.

Suppose that there are no involutions in $RT_3 - R$. Then $N_S(RT_3) < N_S(A) = RT_3$ so $RT_3 \in \text{Syl}_2(G)$. Also $R_2 \not\leq RT_3$ must be strongly closed in S, contradicting (3.4). So we may assume that there is an involution $x \in T_3 R - R$, and since R/A is a free $F_2(<x>)$-module, we may take $x \in N(A_0)$. Let $t \in A_0^\# \cap C(x)$.

As $q > 4$, R_2 is weakly closed in $RT_3 = R_2 A_0T_3 = S_0$. Let $S_1 = N_S(R_2)$. If $S_1 < S_0$, then using (2.6) and (3.4) we obtain a contradiction. So assume $S_1 > S_0$. If $a \in N_{S_1}(S_0) - S_0$ then $A_0^\# \cap R_2 A_0^\# = 1$. As $T_3 R / R$ is cyclic this
forces $|A_0| = 2$ and we may assume that $T_3A_0 = T_3 \times A_0$ with T_3 cyclic.

Now, let bars denote images modulo R_2. Since $C_\Sigma(\ell) = \langle \ell \rangle \times \overline{T_3}$, we may apply Lemma 2.20 in [18] to conclude that either (i) $\overline{\ell} \in Z(\overline{S_1})$, or (ii) $\overline{S_1}$ has a subgroup $\overline{S_2}$ of index 2 with $\overline{S_2} = \overline{D\overline{T_3}}$, $D = \langle \overline{\ell}, \overline{t} \rangle$ dihedral (with $(\overline{\ell}t)^2 = 1$) and $\overline{T_3}$ acting on \overline{D} centralizing $\overline{\ell}$ and normalizing $\langle \overline{\ell} \rangle$; also $|\overline{T_3} \cap \overline{D}| = 2$ and the involutions $\overline{\ell}t$ are fused in $\overline{S_2}$. Set $\langle s \rangle = \Omega_1(\overline{T_3})$. Then $\langle \overline{s} \rangle = Z(\overline{D})$.

Let $z \in S_1 - R_2$ be an involution, and suppose $m([R_2, z]) < 2$. Then $\overline{z} \not\in C(\overline{\ell})$, so we are in case (ii) above. If $\overline{z} \in \overline{D\overline{T_3}}$, then $\overline{z} = \overline{z_1z_2}$ with $z_1 \in D$, $z_2 \in T_3$, and $|z_2| = 4$. But $\overline{\ell} \sim z_2$, so $m([R_2, z]) < 4$. Hence $q = 16$, $m([R_2, z]) = 2$. If $\overline{z} \not\in \overline{D\overline{T_3}}$, then $\langle \overline{z}, \overline{t} \rangle > \overline{D}$ is dihedral of order $2|\overline{D}|$ and, hence, we can write \overline{s} as a $\frac{1}{4}|\overline{D}|$th power of a product of \overline{z} and a conjugate. In particular, $m([R_2, s]) < 4$, so $q = 16$ and $m([R_2, z]) = 2$. Also, $|\overline{D}| = 4$ and so in this case $\overline{D\overline{T_3}} = C_\Sigma(\overline{\ell})$ and no involution of $\overline{D\overline{T_3}}$ satisfies $m([R_2, z]) < 2$.

At this point one can argue that R_2 is weakly closed in S_1. So $S_1 \in \text{Syl}_2(G)$ and using (2.6) we have R_2 strongly closed in S_1. This is a contradiction.

At this stage we have considered all cases of (2.4) and we conclude that there are no counterexamples to the main theorem with $\tilde{M}_1 \cong L_2(q)$, $q = 2^n > 4$.

5. $\tilde{M}_1 \cong \text{Sz}(q)$. Recall the notation of §3 and assume $\tilde{M}_1 \cong \text{Sz}(q)$. $R \in \text{Syl}_2(N(A))$, $R = T_1R_2A_0$, R_2 is abelian, and $[D_1, R] = T_1R_2$. Let $Y = N_G(R) < N_G(A_1)$ (as $A_1 = Z(R)$) and consider the induced group Y^* on $\Delta = \{(A/A_1)^Y\}$.

We will obtain a contradiction to the standing assumption that G is a counterexample to the main theorem.

(5.1) Suppose T_1 is isomorphic to the Sylow 2-subgroup of $\text{Sz}(8)$. Then $\text{Aut}(T_1)$ does not involve $L_3(2)$.

PROOF. Suppose $X = \text{Aut}(T_1)$ does induce $L_3(2)$. Then $\text{Aut}(T_1)$ induces $L_3(2)$ on T_1/A_1 and on A_1, and looking at the action of an element of order 7 in X we see that the representations of X on T_1/A_1 and on A_1 are contragredient. Choose a basis x_1A_1, x_2A_1, x_3A_1 of T_1/A_1 and a klein group $X_0 < X$ centralizing $\langle x_1A_1, x_2A_1\rangle$. Then X_0 centralizes $\langle x_1^2, x_2^2\rangle$, whereas X_0 centralizes no klein group in A_1. This is a contradiction.

(5.2) If $q = 8$ and $T_0 \cong Z_2 \times Z_2$, then $G \cong \text{Ru}$, the Rudvalis group.

PROOF. Dempwolff [6] (see the appendix).

(5.3) $|\Delta| < 5q$.

PROOF. By Lemma 1.8 of [6], $R - A_1$ contains at most $q(2q|A_0| - |A_0| + q - 2)$ involutions. Each conjugate of A contains $q|A_0| - q$ involutions outside
and by the tight embedding property, \(A^g \neq A \) for \(g \in Y \) implies \(A^g \cap A = A \). The result follows.

(5.4) \(|\Delta| = q \) and \(Y^* \) is 2-transitive on \(\Delta \). Either \(Y^* \cong L_3(2) \) or \(Y^* \) contains a regular normal subgroup.

Proof. Let \(N^* \) be a minimal normal subgroup of \(Y^* \). We note that
\[|\Delta| = 1 + k(q - 1) \]
where \(k \geq 1 \) is an integer. This follows since \(D_1^* \) is semiregular on \(\Delta - \{ A/A_1 \} \). Also \(|Y^*| = |\Delta|v \) where \(q - 1|v \) and \(v \) is odd.

We claim that \(N^* \cong L_3(2) \) or \(N^* \) is a \(p \)-group for some prime \(p \). First note that by (3.3) \(R \not\subseteq \text{Syl}_2(Y) \). So \(|Y^*| \) is even. By (5.3) \(k \leq 5 \). Consequently, \(k = 1, 3, \) or \(5 \). Suppose that \(k = 3 \) or \(5 \). Then \(8 \nmid |Y^*| \). By Feit and Thompson [7] and Gorenstein and Walter [14], if the claim is false then \(N^* \cong \text{PSL}(2, q_1) \) for some prime power \(q_1 \). Suppose this occurs. Let \(P^* \) be a Sylow \(p \)-subgroup of \(Y^* \) for a primitive divisor \(p \) of \(q - 1 \). If \(P^* \cap N^* \neq 1 \), then \(N_{N^*}(P^* \cap N^*) \) has order twice an odd number. This implies that some involution in \(Y^* \) normalizes a conjugate of \(P^* \). But \(P^* \) fixes just one point of \(\Delta \), and the stabilizer of this point in \(Y^* \) has odd order. So \(P^* \cap N^* = 1 \) and by the Frattini argument \(P^* \) normalizes a Sylow 2-subgroup of \(N^* \). But then \(P^* \) centralizes this subgroup (as \(p \neq 3 \)) and we again have a contradiction.

Finally consider the case \(k = 1 \). Here \(Y^* \) is 2-transitive. By Hering, Kantor and Seitz [16] either \(N^* \) is a \(p \)-group or \(N^* \cong \text{PSL}(2, q_1) \) for some \(q_1 \). As in (2.7) we must have \(q_1 = 7 \) and \(q = 8 \) in the latter case.

(5.5) \(Y \) does not induce \(L_3(2) \) on \(R/A_1 \).

Proof. Suppose \(Y \) induces \(L_3(2) \) on \(R/A_1 \). Then \(q = 8 \) and, by (5.2), \(|T_0| = 2 \) or \(8 \). The nontrivial irreducible constituents of \(D_1 \) on \(R/A_1 \) are \(T_1/A_1 \) and \(R_2/A_1 \). These are inequivalent. Also the irreducible \(F_2 \)-modules of \(L_3(2) \) have degrees \(1, 3, 3, 8 \). Suppose that the representation of degree \(8 \) is a \(Y \)-composition factor on \(R/A_1 \). Since any \(F_2 \)-module affording this representation is injective and projective, \(R/A_1 \) is completely reducible as an \(F_2(Y) \)-module. But then there is an involution \(t \in A_0 \) such that \(A_1 \langle t \rangle \leq Y \). As \(t^G \cap A_1 \langle t \rangle = t^{R_1} \cap A_1 \langle t \rangle \), \(Y \not\leq R_2C(t) \), a contradiction.

Let \(V/A_1 \) be a minimal normal subgroup of \(Y/A_1 \) contained in \(R/A_1 \). Then \(|V/A_1| = 2 \) or \(8 \) and, as above, the case \(|V/A_1| = 2 \) gives a contradiction. So \(|V/A_1| = 8 \) and from the action of \(D_1 \) on \(R/A_1 \) we have \(V = T_1 \) or \(R_2 \). By (5.1) \(V \neq T_1 \), so \(R_2 \not\leq Y \).

As \(Y^2 \cong L_3(2) \) and \(|T_0| = 2 \) or \(8 \), \(D_1 \) must contain an element \(g \) with \(g \) inducing an element of order 3 on \(R \) and \(C_{A_0}(g) \neq 1 \). Say \(1 \neq t \in C_{A_0}(g) \). Then \(t \) normalizes \(C_{T_1R_1}(g) \). Now \(C_{T_1R_1}(g) \) has order \(8 \) as \(g \) induces the regular module for \(Z_3 \) on each of \(A_1, T_1/A_1 \), and \(R_2/A_1 \). So \(C_{T_1R_1}(g) = \langle t_1, r_2 \rangle \) for some \(t_1 \in T_1 - A_1, r_2 \in R_2 - A_1 \). Therefore \([r_2, t] = t_2^2 \).
First suppose that R_2 is elementary abelian. Let $x \in Y$ be such that x^A inverts g^A and $x \in N\langle g\rangle$. Then $x \in N(C_R(g)) = \langle t_1, r_2 \rangle C_{A_0}(g)$. As neither $T_1 t$ nor $R_2 t$ contain involutions not in A, we have $t^* \in t_1 t_2 t A_1$. In particular, $t_1 t_2$ must be an involution. This forces $I = t_1 t_2 / t_1, r_2$. So $[t_1, r_2] = 1$ and, by (2.3), $[T_1, R_2] = 1$. At this point Y normalizes $C_R(R_2) = T_1 R_2$ and, arguing as in (5.1) (choosing bases in $T_1 R_2 / R_2$ rather than in T_1 / A_1), we obtain a contradiction.

Thus R_2 is homocyclic and with $t_1, r_2,$ and t as before, $R_2 = C_{R_2}(\langle g \rangle)$ and t inverts r_2. As t commutes with the action of D_1 on R_2, t inverts R_2. If $T_1 < C(R_2)$, then $T_1 R_2 \langle t \rangle$ is the extended centralizer in R of R_2 and $T_1 R_2$, $T_1 R_2 \langle t \rangle \leq Y$. For $y \in Y$, $t^* \in T_1 R_2 t$. Also $[T_1, R_2 \langle t \rangle] = 1$ and t inverts R_2, so $t^* \in T_1 R_2$. Thus $R_2 t = t^Y$ and $T_1 = C_{T_1, R_2}(\langle t^Y \rangle) < Y$. This contradicts (5.1). Therefore $T_1 < C(R_2)$ and by (2.3) no element in $T_1 - A_1$ commutes with an element in $R_2 - A_1$. The extended centralizer of R_2 in R is $R_2 \langle t \rangle$, so $R_2 \langle t \rangle \leq Y$. Let $J / R_2 \langle t \rangle < R / R_2 \langle t \rangle$ be a minimal normal subgroup of $Y / R_2 \langle t \rangle$. If $J < R_2 A_0$, then A_0 would contain a klein group with each involution inverting R_2. This is ridiculous. So Y induces $L_3(2)$ on $J / R_2 \langle t \rangle$ and $J = R_2 \langle t \rangle T_1$. As D_1 has inequivalent representations on T_1 / A_1 and on R_2 / A_1, the representation of Y on $J / R_2 \langle t \rangle$ is the contragredient of the representation of Y on R_2 / A_1.

We now complete the proof of (5.5) using an argument in Dempwolff [6] (see the end of the proof of Lemma 3.4 in [6]). Let $r_2 \in R_2 - A_1$ with $a = r_2^2$ and let $K = C_Y(\langle a \rangle)$. As the representation of Y on $J / R_2 \langle t \rangle$ is contragredient to the representation of Y on A_1, K fixes no involution in $J / R_2 \langle t \rangle = T_1 R_2 \langle t \rangle / R_2 \langle t \rangle$. Choose $t_1 \in T_1$ with $[t_1, r_2] = a$ and $x \in K$ with $(t_1 R_2 \langle t \rangle)^x \neq t_1 R_2 \langle t \rangle$. Say $t_1^x = t_2 t_0^* r$, with $t_2 \in T_1 - A_1$, $a = 0$ or 1, and $r \in R_2$. Then we have $a = a^x = [t_1^x, r_2^x]$. But $r_2^x \in r_2 A_1$ as R_2 is homocyclic and the squaring map is a Y-isomorphism from R_2 / A_1 to A_1. So

$$a = [t_2 t_0^* r, r_2^x] = [t_2, r_2^x][t_0^* r, r_2^x] = [t_2, r_2][t_0^* r, r_2].$$

We know $[t, r_2] = a$ and, since $[t_2, r_2] \neq 1$, this forces $a = 0$ and $[t_2, r_2] = a$. But then $t_2 t_1^{-1} \in C_{T_1}(r_2) < A_1$, whereas $t_1 R_2 \langle t \rangle \neq t_2 R_2 \langle t \rangle$. This is the final contradiction.

At this stage we know that Y^A contains a regular normal subgroup.

(5.6) $T_1 R_2 < Y$ and $R_2 < Y$.

Proof. Let V / A_1 be minimal normal in Y / A_1 with $V < R$. If $D_1 < C(V / A_1)$, then $V < A$, which is impossible. Also D_1 must act irreducibly on V / A_1, so $V = T_1$ or R_2. Suppose that $V = T_1$. If $[R_2, T_1] = 1$, then $R_2 A_0 = C_R(T_1) < Y$. In this case $R_2 = R_2 A_0 - \bigcup_{g \in A_2} A_0)^* < Y$. Suppose that $[R_2, T_1] \neq 1$. Then by (2.3) $x \in T_1 - A_1, y \in R_2 - A_1$ implies that $[x, y] \neq 1$. Consequently neither $x y$ nor $x y t$ centralizes x, where $t \in A_0$. So $A =
Let \(V/R_2 \) be normal in \(Y/R_2 \), with \(V \leq R_2A_0 \). Choose \(V \) maximal such that \(T_1V \triangleleft Y \). Say \(V > R_2 \). Then \(V = R_2(A_0 \cap V) \) and \(A_0 \cap V \) is tightly embedded in \(Y \). So \(V \) contains \(q^2 \) conjugates of \(A_0 \cap V \) and each element of \(V - R_2 \) is an involution. It follows that \(|A_0 \cap V| = 2 \) and \(A_0 \cap V = \langle t \rangle \) inverts \(R_2 \). Let \(U \leq Y \) be a \(D_1 \)-invariant Sylow 2-subgroup of \(Y \), containing \(R \). Then \(A_1 = Z(U) \) and we may assume \(T_1 \triangleleft C(R_2) \), for otherwise \(T_1R_2 = C_R(R_2) \triangleleft Y \). Say \(u \in U \), \(x \in T_1 - A_1 \), and \(x^u = ytx \) with \(y \in R_2 \). For any \(r \in R_2 \), we have

\[
\left[x, r \right] = \left[x, r \right]^u = \left[xyt, r \right] = \left[x, r \right] \left[t, r \right],
\]

whence \([t, r] = 1 \). This is certainly false, so \(V = R_2 \) as required.

We conclude that \(T_1R_2 \triangleleft Y \), proving the result.

Let \(U > R \) be a Sylow 2-subgroup of \(Y \), invariant under \(D_1 \). Setting \(U_1 = [U, D_1] \) we have \(U = U_1A_0 \) and \(U_1 \cap A_0 = 1 \).

(5.7) \(R_2 = Z(T_1R_2) \).

Proof. Suppose \([T_1, R_2] \neq 1 \). Consider the map \(u_1 \to [t, u_1] \), where \(u_1 \in U_1 \) and \(t \in \mathbb{A}_0^n \) is fixed. Then considering this map from \(U_1/T_1R_2 \) to \(T_1R_2/A_1 \) and noting the map commutes with the action of \(D_1 \), we see that \([t, U_1]A_1 = T_1 \) or \(R_2 \) (use the fact that \(T_1/A_1 \) and \(R_2/A_1 \) are inequivalent irreducible \(F_2(D_1) \)-modules). If \([t, U_1]A_1 = T_1 \), then \(U_1 \) normalizes \(T_1 \). As in (5.6) this forces \(C_R(T_1) = A \) to be normal in \(U \), which is a contradiction.

Consequently, \([U_1, A_0] = R_2 \) and \(R_2A_0 - R_2 = \cup_{g \in Y} A_0^g \). Then \(A_0 = \langle t \rangle \) inverts \(R_2 \). We note \(U_1/T_1R_2 \cong R_2/A_1 \cong A_1 \) as \(F_2(D_1) \)-modules. Also \(U_1/R_2 \) is elementary abelian, as otherwise \(T_1R_2/R_2 = \Omega_1(U_1/R_2) \) and, for \(x \in T_1 - R_2 \), \(xR_2 = u^2R_2 \) for some \(u \in U_1 \). But then \([x, R_2] = [u^2, R_2] = 1 \), contradicting (2.3). As \(T_1 \triangleleft U_1 \), (2.3) implies that \(U_1/A_1 \) has derived group \(R_2/A_1 \) and for each \(t_1 \in T_1 - A_1 \) and \(r_2 \in R_2 - A_1 \), there is some element \(u \in U_1 \) with \(t_1^u = t_1r_2a \) with \(a \in A_1 \). But \(u \) centralizes \(t_1^u \), so \(t_1^u = t_1r_2^u(t_1, r_2) \) and \(r_2^u = [t_1, r_2] \). So \(t_1 \) inverts \(r_2 \). But \(t_1 \) was arbitrary and, by (2.3), \(C_R(r_2) = A_1 \). This is a contradiction.

(5.8) **There are members of \(A \) not in \(R_2A_0/A_1 \). Consequently, \(\langle x \in A \rangle = R/A_1 \).**

Proof. Suppose that \(A \subseteq R_2A_0/A_1 \). If \(R_2 \) is elementary, then there are no involutions in \(R_2A_0 - A_1A_0 - R_2 \), a contradiction. Consequently, \(R_2 \) has exponent 4 and \(A_0 = \langle t \rangle \) inverts \(R_2 \).

Also \(Y \) normalizes \(C_R(\langle A \rangle) = T_1 \). Consider \(N = N_G(T_1) \) and apply (2.9) to obtain the structure of a Sylow 2-subgroup \(U_2\langle t \rangle \) of \(N \). By (5.1) \(N \cap N(R) \) does not involve \(L_2(2) \), so \(U_2/T_1 \) is homocyclic of rank \(n \), elementary of order \(q^2 \), the Sylow 2-subgroup of \(L_3(q) \), or the Sylow 2-subgroup of \(U_3(q) \).
We may assume that D_1 normalizes T_1/A_1 and A_1. Consequently, $\Phi(U_2) \leq C_{U_2}(T_1) = U_3$. So U_2/U_3 is elementary abelian. Also $T_1 \leq U_3$, so we may write $U_2/U_3 = T_1U_2/U_3 \times U_4/U_3$, with $U_4 D_1$-invariant. Each nontrivial D_1-composition factor of U_4 is equivalent to A_1, whereas T_1U_3/U_3 is D_1-equivalent to T_1/A_1, which is not equivalent to A_1. Consequently, t normalizes U_4.

By (2.9) U_4 is elementary of order q^2, homocyclic of rank n, The Sylow 2-subgroup of $U_3(q)$, or the Sylow 2-subgroup of $L_3(q)$. We conclude that U_2/T_1 is elementary or homocyclic of rank n. Also $U_3 > R_2$. We must have U_4/R_3 of order 1 or q.

If $U_3(t) \in Syl_2(G)$, then we get a contradiction as follows. First we claim that $tG \cap U_2 = \emptyset$. For suppose $t \in U_2$. As each of U_2/T_1 and U_2/U_3 are abelian we have $U_2 < T_1 \cap U_3 = A_1$. Consequently, $|C_{U_2}(t)| > |U_2|/q$ and it follows that $|U_2| = q^3$. Therefore $U_2 = T_1U_2 = T_1R_2$. But then $R_2 < C(t^2)$, which is impossible. This proves the claim.

Now apply the Thompson transfer lemma to conclude $t \not\in G'$. Clearly $U_2 < G'$ by the action of D_1. Notice that U_2/A_1 is abelian, so that U_2 has class 2. This is against (3.3).

We now have that $U_3(t) \not\in Syl_2(G)$. Assume also that U_4 is not abelian. Then for $x \in U_4 - R_2$ and $t_1 \in T_1$,

$$(t_1 xt)^2 = t_1(xt)t_1(xt) = t_1^2(xt)[xt, t_1](xt) = t_1^2(xt)^2[xt, t_1, xt] \in (xt)^2A_1$$

because $t_1^2 \in A_1$ and $[T_1, U_3(t)] < A_1$. As $(xt)^2 \in R_2 - A_1$, so such element is an involution. In particular,

$$tG \cap U_2(t) \subseteq T_1U_3(t) = T_1R_2(t) = R.$$

It is easy to see that there are no involutions in $T_1^#R_2t$, and the claim above shows that $tG \cap U_2 = \emptyset$. Consequently, $tG \cap U_3(t) = R_2t = tU_2(t)$, and it follows that $U_2(t) \in Syl_2(G)$, a contradiction. Therefore U_4 is a homocyclic of rank n.

Suppose $U_4 = U_3 < C(T_1)$. Let $g \in N(U_3(t)) = P$ with $t^g = t_1u_4t$, $t_1 \in T_1 - A_1$, and $u_4 \in U_4$. One checks directly that it is not possible for $C(t^g) \cap T_1U_4$ to cover T_1U_4/U_4 and so this is impossible. Therefore for $g \in P$, $t^g \in U_4(t)$ and, hence,

$$C(t^B) \cap T_1U_4(t) = T_1 \triangleleft B,$$

a contradiction. Therefore $U_4 > U_3 > R_2$.

Now $Z_2(U_3(t)) = T_1R_2$ so P normalizes each of T_1R_2, $R_2 = Z(T_1R_2)$, $T_1U_4 = U_3(t) \cap C(R_2)$, and $T_1U_3 = (T_1R_2)Z(T_1U_4)$. Consider $P = N(U_3(t))$. We want to apply (2.9) to P/T_1U_3. First we must show that P does not involve $L_3(2)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Suppose that \(P \) involves \(L_3(2) \). The representations of \(P \) on \(T_1R_2/R_2 \) and on \(U_2/T_1U_3 \) are contragredient. Say \(P < N(U_4) \). Then we argue as in (5.5) to get a contradiction. Namely, choose \(u \in U_4 - U_3 \) and set \(K = C_p(uU_3) \). Choose \(t_1 \in T_1 - A_1 \) with \([t_1, u] = a\), where \(\langle a \rangle = \Omega_4(\langle u \rangle) \). As \(K \) fixes no involution in \(T_1R_2/R_2 \), we choose \(k \in K \) with \(t_1^r \neq t_1R_2 \). Say \(t_1^r = t_2r \), \(r \in R_2 \), and \(u^k = uu_3 \), with \(u_3 \in U_3 \). Then
\[
a = a^k = [t_1^r, u^k] = [t_2r, uu_3] = [t_2, u].
\]
But then \(t_1t_2^{-1} \in C(u) \), contradicting (2.3).

Therefore \(P \not< N(U_4) \) and we note that this implies \(U_4 \cap U_3^g = U_3 \) for \(g \in P - N(U_4) \). Otherwise \(C(U_4 \cap U_3^g) > \langle U_4, U_3^g \rangle > U_4 \), against (2.3). Choose a Sylow 3-subgroup \(J \) of \(P \) normalized by \(t \). Then a Sylow 2-subgroup of \(N_p(J) \) has the form \(Q = \langle t_1, u_4 \rangle \langle x, t \rangle \), where \(t_1 \in T_1 - A_1 \), \(u_4 \in U_4 - U_3 \), and \(Q/\langle t_1, u_4 \rangle \) is a klein group. Modulo \(U_3 \) we must have \(u_4^x = t_1u_4 \) and \(t^x = t_4u_4 \) or \(t_4u_4 \). Say \(t^x = t_4u_4 \) modulo \(U_3 \). As \(t^x \) inverts \(U_4 \), we compute and get a contradiction. Therefore \(P \) does not involve \(L_3(2) \) and (2.9) applies.

By (2.9) and a previous argument we obtain a \(D_1 \)-invariant subgroup \(U_5 > U_4 \) such that \(D_1 \) is transitive on \((U_5/U_4)^* \) and \(T_1U_5/\langle t \rangle \in \text{Syl}_2(P) \). We have \(T_1R_2 = \Omega_4(T_1U_4) \), so \([T_1, U_5] < R_2 \). If \(u \in U_5 \) and \(t_1 \in T_1 - A_1 \), then \(t_1^u = t_1r_2 \) for \(r_2 \in R_2 \). But \(u \) fixes \(t_1^u \), so that \(r_2^2 = 1 \) and \(r_2 \in A_1 \). Consequently, \(u \in N(T_1) \), contradicting \(U_2(\langle t \rangle) \in \text{Syl}_2(N(T_1)) \). This completes the proof of (5.8).

(5.9) \(R_2 \) is elementary abelian.

PROOF. By (5.8) there are elements \(t_1 \in T_1 - A_1 \), \(r_2 \in R_2 \), \(t \in A_0^* \) with \(t_1r_2t \) conjugate to an involution in \(A_0 \). Say \(t^u = t_1r_2^v \) for \(u \in U_1 \). Then
\[
T_1 \cap T_1^u = C_{U_1}(t) \cap C_{U_1}(t^u).
\]
As \(T_1 \) centralizes \(r_2t \), we conclude from the structure of \(T_1 \) that \(T_1 \cap T_1^u < A_1 \langle t_1 \rangle \).

Choose \(t_2 \in T_1 - A_1 \). Then \(t_2^d = t_2d \) for some \(d \in R_2 \). If \(t_2 \not\in A_1 \langle t_1 \rangle \), then, by the above, \(d \not\in A_1 \). On the other hand \(d^2 = 1 \). So \(R_2 - A_1 \) contains involutions and, consequently, \(R_2 \) is elementary.

(5.10) \(U_1/R_2 \) is elementary abelian.

PROOF. \(U_1/A_1 \) is of class at most 2 and \(U_1/R_2 \) is abelian by (2.2). For \(x, y \)
in U_1, $[x, y^2] = [x, y]^2$ modulo A_1, so that $[x, y^2] \in A_1$. Therefore

$$[x^2, y^2] = [x, y^2]^2 = [x, y^2] = [x, y^2]^2 = 1.$$

If U_1/R_2 were homocyclic of exponent 4, then $\Omega_1(U_1/R_2) = T_1R_2/R_2$ and, by the above, T_1 is abelian. This is absurd. U_1/R_2 must be elementary.

(5.11) $R_2 = Z(U_1)$.

Proof. It suffices to prove that $R_2 \leq Z(U_1)$. Suppose otherwise. Consider the semidirect product $R_2(U_1/T_1R_2)D_1$, of order q^3D_1. By (5.10) and (2.2), we may apply (2.3). As we are assuming that R_2 is not central in U_1, we conclude that if $r_2 \in R_2 \neq A_1$ and $u \in U_1 - T_1R_2$, then $[u, r_2] \neq 1$.

Recall the proof of (5.9) and the notation. For $t_2 \in T_1 - A_1 \langle t_1 \rangle$, $t_2^2 = t_2d$ for $d \in R_2 - A_1$. But $u^2 \in R_2$, so $t_2 = t_2u = t_2dd^u$ and $d = d^u$. This contradicts the above paragraph.

We can now obtain a contradiction in the case $\tilde{M}_1 \cong Sz(q)$. For each involution $t \in A_0^\#$, both R_2 and U_1/R_2 are free $F_2(t)$-modules.

Suppose $A_0 = \langle t \rangle$. Then the above implies $t^G \cap U = U_1t = tU$, and so $U = U_1 \langle t \rangle \in Syl_2(G)$. By the Thompson transfer lemma $t \not\in G'$, although $U_1 \leq G'$ (use the action of D_1). As U_1 has class 2 we have a contradiction to (3.3).

Now assume that $|A_0| > 2$. Fix $u \in U_1 - T_1R_2$ and consider the involutions t'' for $t \in A_0^\#$. We have $t'' = t_1r_2$ for $t_1 \in T_1 - A_1$, $r_2 \in R_2$. As $u^2 \in R_2$, $t''^2 \in T_1$. But $t''^2 = t_1r_2t_1r_2$ and $r_2 = r_2^u$. So $t_1t_1'' \in A_1$ and $T_1 \cap T_1'' > A_1\langle t_1 \rangle$. On the other hand, $T_1 \cap T_1'' \leq C(A_0) \cap C(A_0^\#)$. Choosing $t' \neq t$ in $A_0^\#$ we have $(t'')^u = t't_1r_2$. We claim that $t_1A_1 \neq t_1A_1$. Otherwise $tt'' \in A_0$ and $(tt'')^u \in tt'R_2$. But as R_2 is a free $F_2(t''t')$-module, this implies that $u \in R_2C(t'')$, which is false. Therefore $t_1A_1 \neq t_1A_1$. Consequently, t_1 does not centralize $(t'')^u$. This is a contradiction, as $t_1 \in T_1''$.

6. $\tilde{M}_1 \cong U_2(q)$. In this section we assume $\tilde{M}_1 \cong U_2(q)$, $q = 2^n > 4$, and obtain a contradiction. Let D_1 be as in §3 and $D = D_1^{-1}$. Also $R_0 = T_1R_2$.

(6.1) $|A_0| = 2$.

Proof. Assume $|A_0| > 2$. By (3.7) $O(M) = 1$. Let K_1 and $K = K_1^{-1}$ be as in §3. Then $T_1K \leq C(A)$ and for each $A_0^\# \leq A$, $(C_{MT}(K))' \cong L_2(q)$. Set $G_0 = N_G(K)$.

By induction $E(G_0/O(G_0)) \cong A_0$, I_2, or M_{12}. The first case is out by (3.13)(ii). Suppose $E(G_0/O(G_0)) \cong J_2$. Then $|A_0| = q = 4$, R_2 is elementary abelian, and $[A_0R_2, T_1] = 1$ (for this use the 3-subgroups lemma together with $[R_2, K] = 1$, $[T_1, K] = T_1$, and $[R_2, T_1] < A_1$). Also G_0 contains an involution g interchanging A and R_2. (Sylow 2-subgroups of G_0 are of type
$L_3(4)\langle \sigma \rangle$ where σ is a graph-field automorphism. See [13].) Hence g normalizes $G_2(C_2(\langle A, R_2 \rangle)) = T_1$. Since $[g, K] = 1$ and K is irreducible on T_1/A_1, g centralizes T_1/A_1 and, hence, also A_1 which is not the case.

Finally we suppose $E(G_0/O(G_0)) \simeq M_{12}$. Then $G_0/O(G_0) \cup \text{Aut}(M_{12})$ and $T_0 \not< G_0$. It follows that there is an involution in $N(T_0) \cap C(K)$ not centralizing T_0 (e.g. see the table in [3], which gives centralizers of involutions for $\text{Aut}(M_{12})$). This is impossible.

(6.2) $[T_1, R_2] = 1$.

Proof. We have $[D, R_2] = 1$ and $[D, T_1] = T_1$. So $[D, R_2, T_1] = 1$ and $[R_2, T_1, D] < [A_1, D] = 1$. The 3-subgroups lemma implies the result.

(6.3) (i) T_1R_2 is characteristic in $T_1R_2A_0$.
(ii) R_2 is characteristic in T_1R_2 and in $T_1R_2A_0T_3$.

Proof. The abelian subgroups of maximal order in $R_1A_0 = T_1R_2A_0$ are the groups BR_2 where $B < T_1$ and $B \simeq Z_4^n$. For if $B_1 < T_1R_2A_0$ is abelian and $B_1 \not< R_0$, then $[B_1, x] \neq 1$ for any $x \in R_2 - A_1$, $|B_1 \cap R_0| < 2^{2^n}$ and $|B_1| < |A_0|^{2^{2^n}} < 2^{3n} = |BR_2|$. So $R_0 = J(R_0A_0)$ and R_0 is characteristic in R_0A_0. Also $R_2 = Z(R_0)$. Similarly, $R_0 = J(T_1R_2A_0T_3)$ and we get the result.

Notation. Let $A_0 = \langle t \rangle$ and $Y = N(T_1R_2A_0)$. So $Y < N(R_2)$ by (6.3). Set $\Omega = \{AR_2/R_2\}$ and let Y^* be the induced group of Y on Ω. Set $S_1 = T_1R_2A_0T_3$ and $S_1 < S = \text{Syl}_2(G)$ with $S \cap Y \in \text{Syl}_2(Y)$.

(6.4) $\Omega \neq \{AR_2/R_2\}$.

Proof. Suppose that $\Omega = \{AR_2/R_2\}$ so that $A_0R_2 < Y$. Then

\[
Y < N(T_1R_2A_0 \cap C(AR_2)) = N(T_1).
\]

If R_2 is elementary, then $A_1\langle t \rangle = \langle t^\sigma \rangle \cap R_2\langle t \rangle$ and so $S_1 = S$. We can obtain the structure of $S \cap Y$ in case R_2 is homocyclic of rank n as follows.

First note that Y cannot involve $L_3(2)$ in its action on R_2T_1/T_1, since using the squaring map Y would then involve $L_3(2)$ in its action on A_1. But then Y involves $L_3(2)$ in its action on T_1 and the argument in (3.14) give a contradiction. Now apply (2.9) to the group Y/T_1 (setting $U = R_2T_1/T_1$ and $R = A_0T_1/T_1$). We may assume $S \cap Y = U_1T_3A_0$ where $T_1R_2 < U_1$ and U_1 is invariant under T_3A_0 and there is a subgroup $E_1 < N(U_1)$ such that E_1 acts as D_1 on T_1R_2. So $E = E_1^{-1}$ centralizes U_1/T_1. Also E_1 is irreducible on T_1/A_1 and E does not centralize T_1/A_1. It follows that $U_1/A_1 = T_1/A_1 \times U_2/A_1$ for $U_2/A_1 = C_{U_1/A_1}(E)$. Also $U_2 = C_{U_1}(E)$ and $U_2/A_1 \simeq U_1/T_1$. By (2.4) and the fact that R_2 is homocyclic of rank n, U_2 is homocyclic of rank n, or U_2 is isomorphic to a Sylow 2-subgroup of $U_3(q)$ or $L_3(q)$. As in (6.2) $[U_2, T_1] = 1$.

If R_2 is elementary, set $U_2 = R_2$, so that we have the group U_2 in all cases.
We next determine S. If $U_2 = R_2$ is elementary then we have already noticed that $S = S_1 = T_1 R_2 T_3 A_0$. Suppose U_2 is nonabelian. Then
\[N_S (S \cap Y) < N_S (Z(\Omega_1(S \cap Y))) = N(A_1) \]
and $T_1 U_2 / A_1$ is unique of its isomorphic type in $(S \cap Y) / A_1$. Consequently, $T_1 U_2 \leq N_S (S \cap Y)$. Fix $s \in N_S (S \cap Y) - S \cap Y$. Then $C_{T_1 U_2} (t^s) \approx T_1$. If $t^s \in T_1 U_2 t$, then, as $U_2 < C(T_1)$, $t^s \in U_2 t$. But
\[t^o \cap U_2 t = R_2 t = t U_2, \]
so $s \in U_2 C(t) < S < Y$, a contradiction. So $t^s \in T_1 U_2 (T_3 A_0 - A_0)$. t^s normalizes T_1 and U_2, and $C_{T_1 U_2 / A_1} (t) \approx C_{T_1 U_2 / A_1} (t^s)$ has order q^3. It follows that t^s centralizes U_2 / A_1 and, hence, $U_2 (t^s) / A_1$. Then for $x \in U_2 < t^s$,
\[[x^2, t^s] = [x, t^s]^x [x, t^s] = 1 \]
so t^s centralizes R_2.

Therefore $R_2^{t^s} < T_1$ and is inverted by an element of $T_1 U_2 T_3 A_0$. Hence, $A_0 T_3$ is noncyclic and
\[R_2^{t^s} / A_1 = C_{T_1 / A_1} (\Omega_1 (T_3)). \]

Thus $|N_S (S \cap Y) : S \cap Y | = 2$. We easily see that A_1 is characteristic in $N_S (S \cap Y)$, and so $T_1 U_2$ is characteristic in $N_S (S \cap Y)$. From the action of $N_S (S \cap Y)$ on $T_1 U_2 / A_1$ we now see that $N_S (S \cap Y) = S$. Let $\Omega_1 (T_3) = \langle \sigma \rangle$. Without loss $t^s \in t o T_1 U_2$. Since T_1 / A_1 is a free $F_2 \langle \sigma \rangle$-module we may assume that $t^s \in t o U_2$. Also t^s centralizes U_2 / A_1, so $t o$ centralizes U_2 / A_1 and, hence, $U_2 (t^s) / A_1$. Arguing as in the previous paragraph we obtain $t o \in C(R_2)$. Write $t^s = t o u_2$ with $u_2 \in U_2$. Then $u_2 \in C_{U_2} (R_2) = R_2$. We are assuming that R_2 is not elementary abelian, so for t^s to be an involution we must have $u_2 = A_1$. Conjugating t^s by an element of T_1 we may assume that $t^s = t o$.

Now by (2.6), $T_1 U_2 / A_1$ is strongly closed in S / A_1, whence by G"oldschmidt [11], the action of E_1, and the knowledge of the appropriate Schur multipliers, we conclude that $\overline{T_1} \overline{U_2} \leq N(A_1)$ (where bars refer to images in $N(A_1) / O(N(A_1))$). Let $x \in S - Y$ and suppose $x \sim t$. $T_1 U_2 / A_1$ is an $F_2 \langle x \rangle$-module, so if $C / A_1 = C(x) \cap T_1 U_2 / A_1$, then $|C| > q^3$. As x centralizes C / A_1, $|C(x)| > q^2$. Any subgroup X of T_1 of order q^2 contains A_1. For otherwise, with H a subgroup of A_1 of index 2 containing $X \cap A_1$, and bars indicating images modulo H, $\overline{T_1}$ is extraspecial of order $2 q^2$ and \overline{X} is a subgroup of order $> q$ meeting $Z(\overline{T_1})$ trivially. This is impossible. Choose g with $x^g = t$ and $C_S (x)^g < S$. By the above we have $t_1 \in T_1$ satisfying
\[t_1 t_1 t_1 = t x t_1 \in t o A_1, \]
so we may assume that $[t, t^s] = 1$. Considering the action of x on $C_G (t) \cap C_G (t^s)$ we have $|C_A (x)| = q$ or \sqrt{q}. Since $|C| > q^3$ and all involutions in
A_1x are in $A_4(x)x$, we conclude that $|C_c(x)| > q^2$ or $q^2\sqrt{q}$, respectively, and in either case $\Phi(C_c(x)) \leq A_4(x)$.

Set $J = \langle x \rangle \times \langle t^x \rangle \langle C_c(x) \rangle$. Then $J^g \leq C_c(t) = T_1T_3A_0$. As $\langle x \rangle \times C_c(x)$ has class at most 2, $\langle (x) \times C_c(x) \rangle^g \leq T_1\langle t, v \rangle$. Suppose $C_A(x) = A_1$. Then for $r_2 \in R_2 - A_1$, x centralizes the involution r_2t_2, and so $C_c(x)$ contains an elementary abelian group of order q^2. This implies that $\langle (x) \times C_c(x) \rangle^g \leq T_1\langle t, v \rangle$ contains an elementary subgroup of order $2q^2$, a contradiction. Therefore $|C_A(x)| = \sqrt{q}$. Then $y \in C_c(x)$ implies that

$$\left| C_c(x), y \right| < \sqrt{q} \quad \text{and} \quad |C_c(\langle x, y \rangle)| > q^2.$$

Therefore

$$y^g < T_1\langle t \rangle \quad \text{and} \quad (C_c(x)(\langle x \rangle))^g < T_1\langle t \rangle.$$

As $C_c(x)(\langle x \rangle)$ has order at least $2q^2\sqrt{q}$, we must have $A_1 < \Phi(C_c(x))$, whereas $\Phi(C_c(x)) \leq A_4(x)$ has order at most \sqrt{q}. This is a contradiction. We have now shown that $tG \cap S \subseteq S \cap Y$.

Now $t \neq v$ as v centralizes an elementary abelian subgroup of T_1U_2 of order q^2. Hence $tG \cap \langle v \rangle T_1U_2 = \emptyset$. Next suppose that $v \sim x$ with x extremal and $x \in T_1U_2$ or $x \in S - Y$. Choose $g \in G$ with $v^g = x$, $C_s(v)^g < C_s(x)$. Then $t^g \sim_s t$, because we have shown that $t^G \cap S < T_1U_2\langle v \rangle t$ and S controls fusion in $t^G \cap T_1U_2\langle v \rangle t$. So $t^g = t$, without loss. Therefore $g \in N(M_1)$ and $v^g \in C(t)$. Then $v^g \in S \cap Y$, and, $x \notin T_1U_2$. This is a contradiction. Therefore v is extremal.

We have $C_s(v) = FT_3\langle t \rangle \langle s_1 \rangle$, where $F = C_{T_1U_2}(v)$ is elementary of order q^2, and $s_1 = 1$ or $s_1 \in S - Y$. By the above v is extremal in S so that $C_s(v) \in Syl_2(C_G(v))$. Set $S_0 = C_s(v)$ and $I = C_{C_c(v)}$. We study the strong closure, I, of $F(v)$ in S_0 (with respect to I). We have already seen that $t^G \cap F(v) = \emptyset$. Since $t^G \cap Ft = A_1t = t^F$, and since no element of $Ft - A_1\langle t \rangle$ is an involution, we conclude that no element of Ft is conjugate to an element of $F^\#$. Similarly, $t \sim tv$ and $t^G \cap Ftv = A_1t^v = (tv)^F$ imply that no element of Ftv is conjugate to an element of F. Let $a \in (F(v))^\#$ and suppose $a^t \cap S_0 \not\subseteq F(v)$. Say $b \in (a^t \cap S_0) - F(v)$.

No element of $FT_3 - F(v)$ is an involution, so, by the above, $b \in S_0 - FT_3\langle t \rangle$. If $F(v)$ is not weakly closed in S_0 (with respect to I), then for some $g \in I, F(v)^g \neq (F(v))^g < S_0$, so $F(v) \cap (F(v))^g$ is maximal in $F(v)$, and we may assume that b centralizes a maximal subgroup of $F(v)$. If $F(v)$ is weakly closed in S_0, then this also holds, as is seen from (2.6). We claim that b must centralize F. As b normalizes T_1U_2, b normalizes $C_{T_1U_2/A_1}(F) = \hat{F}/A_1$, where $\hat{F} = T_1R_2, T_1 < T_1$, and T_1 is homocyclic of rank n. In particular, \hat{F} is abelian, $\otimes_1(\hat{F}) = F$, and $\otimes_1(\hat{F}) = A_1$. Consider the action of b on \hat{F}/A_1. Since $t^b \in tvF, t^b \in tvA_1$, and so $T_1 \cap T_1^b < C_{T_1}(tv) = A_1$, Consequently, $\hat{F}/A_1 = T_{11}/A_1 \times T_{11}/A_1$ and \hat{F}/A_1 is a free $F_2(b)$-module. If b centralizes
Ax, then $g \in F$ implies that gg^b is an involution centralized by b, and it follows that b must centralize F. If b does not centralize A_1, then $[F, b] = [A_1, b]$ has order 2 and $F/A_1 = C(b) \cap \hat{F}/A_1$. In this case there is an element $g \in T_1$ with gg^b of order 4 (just choose g so that $(g^2)^b \neq g^2$). But then $gg^b A_1 \not\subset F/A_1$ although b centralizes $gg^b A_1$. This is a contradiction, so the claim is proved.

In view of the above claim we conclude that either $J = F\langle v \rangle$ or $J = F\langle v \rangle \langle b \rangle = C_{S_0}(F\langle v \rangle)$. Clearly J is weakly closed in S_0, and using (2.6) we have J strongly closed in S_0. We can then apply Goldschmidt [11] and conclude that $E(I/O(I)) \cong L_2(q^2)$ or $L_2(q) \times L_2(q)$. Let H be a 2-complement in $N(F) \cap C(v)$. We consider the group $N = N_0H$, where $N_0 = N_G(F\langle v \rangle) \cap C_G(F)$. Then $N_0 \leq N$ and, since $v^g \in F$, N acts on F_v. Also $P = N_0 \cap T_1U_2$ has order q^4 (check this directly using the fact that $[T_1, U_2] = 1$). As $C_p(v) = F$, P is transitive on F_v. Consequently, N_0 and N are each transitive on F_v.

In N_0 the stabilizer of v must centralize $F\langle v \rangle$. So let $N_1 = C_{N_0}(F\langle v \rangle)$. Then $N = N_1PH$ and H acts on PN_1/N_1. Since $C_5(v) \in \text{Syl}_2(C_G(v))$, and since $C_5(v)$ normalizes N_0, we conclude that $C_5(v) \cap N_1 \in \text{Syl}_2(N_1)$. Consequently, $F\langle v \rangle$ has index at most 2 in a Sylow 2-subgroup of N_1, and $\hat{S} = S \cap N_0 \in \text{Syl}_2(N_0)$. Now $N_0(\hat{S})$ covers N_0/N_0 and we observe that a 2-complement of $N_0(\hat{S})$ induces an abelian group on \hat{S}. For let H_1 be a 2-complement in $N_0(\hat{S})$. Then $H_1/C_{H_1}(F) \cong H/C_H(F)$ is abelian. Also $C_{H_1}(F) < N_1$, so $[P, C_{H_1}(F)] \subseteq F\langle v \rangle \langle g \rangle$, where $g^2 \in F\langle v \rangle$ and $g \in N(F\langle v \rangle)$. Since $C_{H_1}(F)$ centralizes F and normalizes $F\langle v \rangle$, $[P, C_{H_1}(F)] = 1$, proving the claim. Since $E_{\hat{S}}^{g+1} < FH$ and $[\hat{S}, E_{\hat{S}}^{g+1}] = P$, $N_0(\hat{S}) < N_0(P)$. Therefore $N_0(\hat{S}) < N(P') = N(A_i)$. But $H\langle \hat{t} \rangle$ acts irreducibly on F and $N_0(\hat{S})$ induces $H/C_H(F)$ on F. This is a contradiction.

We are left with the possibility that U_2 is homocyclic of rank n. If $U_2 = R_2$, then $S = S_1 = T_1R_2T_3A_0$, so suppose $U_2 > R_2$. Checking centralizers we see that

$$R_2t \subseteq t^{N(S \cap Y)} \subseteq U_2t.$$

So

$$N(S \cap Y) \leq N(C_{S \cap Y}(t^{S \cap Y})) \leq N(T_1) \text{ or } N(T_1\Omega_1(T_3)),$$

and as T_1 is characteristic in $T_1\Omega_1(T_3)$, we have $N(S \cap Y) < N(T_1)$. Consider the group $I = C_G(T_1)E_1$. We have $(S \cap Y) \cap I = U_2\langle \hat{t} \rangle$. We apply (2.9) to I. Even though we may have $q = 4$, the arguments used in the proof of (2.9) all carry through in this case as well. We conclude that there is a homocyclic group $\hat{U}_2 > U_2$ such that \hat{U}_2 has rank n and $\hat{U}_2\langle \hat{t} \rangle \in \text{Syl}_2(C(T_1))$. We may assume that $T_3 < N(\hat{U}_2)$. Letting $S_2 = T_1\hat{U}_2T_3A_0$, we may assume $S_2 < S$. Choose $g \in N_5(S_2) - S_2$. Then $g \in N(Z(\hat{U}_1(S_2))) = \ldots$
$N(A_1)$, and since $T_1 \hat{U}_2 A_0 / A_1$ is the unique group of its isomorphism type in S_2 / A_1, we have $g \in N(T_1 \hat{U}_2 A_0)$. Checking centralizers we have $t^g \in \hat{U}_2 t$. So g normalizes

$$C_{T_1 \hat{U}_2 A_0}(\langle t^{N_2(x)} \rangle) = T_1.$$

Now consider $N(T_1) / T_1$. We argue as in (3.14) that $N(T_1)$ does not involve $L_3(2)$. As g normalizes $T_1 \hat{U}_2 \langle t \rangle / T_1$ we have $\langle E_1, g \rangle$ inducing a 2-transitive group on $T_1 \hat{U}_2 \langle t \rangle / T_1 \hat{U}_2 \langle \hat{U}_2 \rangle$. Using the arguments of (2.7) together with an application of the 3-subgroups theorem we conclude that there is a 2-group $\hat{U}_2 \langle t \rangle$ with $[\hat{U}_2, t] = \hat{U}_2$ and $\hat{U}_2 \leq C(T_1)$. However, $\hat{U}_2 \langle t \rangle \in \text{Syl}_2(C(T_1))$. This is a contradiction. We conclude that $T = T_1 \hat{U}_2 T_3 A_0$. We now have S in all cases. If $R_2 = U_2$, let $\hat{U}_2 = \hat{U}_2$. Then $S = T_1 \hat{U}_2 T_3 A_0$.

If $T_3 A_0$ is cyclic, then we have a contradiction as follows. It is easy to check centralizers to get $t^g \cap T_1 \hat{U}_2 = \emptyset$. So by the Thompson transfer lemma and the action of D_1, $T_1 \hat{U}_2 \in \text{Syl}_2(\langle T_1 \hat{U}_2 \rangle^G)$, against (3.3). We may assume that $T_3 A_0 = T_3 \times A_0 > A_0$ and let $\langle v \rangle = \Omega_1(T_3)$.

Let $X = N_2(A_1)$ and let bars denote images in $X / A_1 = \bar{X}$. Then using (2.6) we have $T_1 \hat{U}_2$ strongly closed in \bar{S} unless possibly $\hat{U}_2 \cong R_2$, in which case $T_1 \hat{U}_2 A_0$ is strongly closed in \bar{S}. By Goldschmidt [11] $(\bar{T}_3 \times A_0) \cap \langle 1 \rangle = 1$. From here we check centralizers of elements of $T_3 \times A_0$ acting on $T_1 \hat{U}_2$ and use the fact that $\bar{S} / T_1 \hat{U}_2$ is abelian to see that

$$t^x \cap T_1 \hat{U}_2 v = t^x \cap T_1 \hat{U}_2 t v = \emptyset.$$

In particular, $t \not\sim v$ and $t \not\sim t v$ in X. Using the action of E_1 on $T_1 \hat{U}_2$ and information on multipliers, we conclude that $T_1 \hat{U}_2 O(\bar{X}) \leq \bar{X}$.

If $t^g = v$ or $t v$, then for some Sylow 2-subgroups, H, of M_8, $A_1 = \Omega_1(H)$ and we may suppose $g \in N(A_1)$. But we have just seen this to be impossible. So $t \not\sim v$ and $t \not\sim t v$. Consequently, if we set $K = C_G(v) / \langle v \rangle$, then $M_2 = C_{M_2}(v) / \langle v \rangle$ is *-standard in K and $N_K(M_2) \cap C(M_2)$ contains $\langle t, v \rangle / \langle v \rangle$ as a Sylow 2-subgroup. By induction we have the structure of $K / O(K)$. Similarly for $C_G(t v) / \langle t v \rangle$.

We claim that $t^G \cap T_1 \hat{U}_2 \langle v \rangle = \emptyset$. For suppose $t^g \in T_1 \hat{U}_2 \langle v \rangle$. Then $A_1 < C_t(t^g)$ and we first show that $A_1 < M_8^f$. If $a \in A_1 - M_8^f t^g$, then since all involutions in $M_8^f a$ are conjugate we have $a \not\sim v$ or $t v$. But then $C_G(v)$ or $C_G(t v)$ contains a conjugate of $T_1 \hat{U}_2 \langle t, v \rangle$, contradicting the above paragraph. Therefore $A_1 < M_8^f \langle t^g \rangle$. All involutions in $M_8^f t^g$ are fused to t^g, so $A_1 < M_8^f$. So we may assume that $g \in X = N_G(A_1)$, whereas we have already shown that $t^g \cap T_1 \hat{U}_2 \langle v \rangle = \emptyset$. So the claim holds and, similarly, $t^G \cap T_1 \hat{U}_2 \langle t v \rangle = \emptyset$.

Apply the Thompson transfer lemma to S, with $S_0 = T_1 \hat{U}_2 T_3$. By the above, $t \not\in G'$, although from the structure of $N(T_1 \hat{U}_2)$ we have $T_1 \hat{U}_2 < G$. So $S \cap G' = T_1 \hat{U}_2 \langle l \rangle$ where $\Omega_1(\langle l \rangle) = \langle v \rangle, \langle t v \rangle$, or 1. Any involution in
$T_1 \hat{U}_2$ is centralized by an abelian subgroup of order q^3. But from the known structure of $C_G(t)$ and $C_G(tv)$, we conclude that $v^G \cap T_1 \hat{U}_2 = (tv)^G \cap T_1 \hat{U}_2 = \emptyset$. Consequently, we may apply the Thompson transfer theorem once again and obtain a normal subgroup of G with $T_1 \hat{U}_2$ as Sylow 2-subgroup. This contradicts (3.3), completing the proof of (6.4).

(6.5) $|\Omega| = q^2$, Y^* is transitive on Ω, and Y^* contains a regular normal subgroup.

Proof. As $A_s^0 \cap T_1 \mathcal{R}_2 = \emptyset$ (check centralizers), $\Omega \subseteq iT_1 \mathcal{R}_2 / \mathcal{R}_2$ and $|\Omega| < q^2$. Using the action of D_1 we see that if Ω is not of order q^2, then $|\Omega| = 1 + \frac{1}{3}(q^2 - 1)$ or $1 + \frac{2}{3}(q^2 - 1)$. In the first case Y^* satisfies the hypotheses, but not the conclusion, of Theorem 1.1 of Hering, Kantor and Seitz [16]. In the second case $|\Omega|$ is odd, so Y^* has cyclic Sylow 2-subgroup and is solvable. By order considerations Y^* is primitive. Also D^*_1 is semiregular on $\Omega - \{AR_2 / \mathcal{R}_2\}$. So if N^* is a minimal normal subgroup of Y^*, N^* is semiregular on Ω and $N^*D^*_1$ is a Frobenius group. But then D^*_1 cannot act fixed-point-freely on $T_1 \mathcal{R}_2 / \mathcal{R}_2$. So $|\Omega| = q^2$ and, by definition of Ω, Y^* is transitive on Ω.

It remains to show that Y^* contains a regular normal subgroup. In the action on Ω, $\Omega \mathcal{R}_1(T_3)$ fixes all (if $T_3 = 1$) or exactly q points of Ω, so if $T_3 \neq 1$, then $C_y(\Omega \mathcal{R}_1(T_3))$ has Sylow 2-subgroups of order dividing $q|T_3|$. If n is even then $3|q + 1$, Y^* is 2-transitive and Theorem (1.1) of [16] gives the result. So suppose n is odd. Then $|T_3| = 1$ or 2. Consider $Y_0 = C_y(A_i) \leq Y$. Then Y_0^* has orbits of equal length on Ω and the stabilizer in Y_0^* of AR_2 / \mathcal{R}_2 is $D^*\Omega_1(T_2)^*$. So $|Y_0^*| = (q + 1)2^a$ or $\frac{1}{3}(q + 1)2^a$ for some integer $a > 2$. Choose N minimal normal in Y^* with $N < Y_0$. If $D^* \cap N = 1$, then N is a 2-group and is consequently a regular normal subgroup. So suppose $D^* \cap N \neq 1$. But $|N : C_N(D^* \cap N)|$ is a power of 2, so we obtain a contradiction from Burnside's Theorem.

Notation. Let Y_1 be the kernel of Y on Ω and let U be a Sylow 2-subgroup of the preimage of the regular normal subgroup of Y^*. We may assume $R_2 \lhd U \cap Y_1$, that $T_1 \mathcal{R}_2 \triangleleft U$, and that there is a subgroup E_1 of odd order such that T_3 normalizes E_1, E_1 normalizes U_1 and E_1 induces D_1 on $T_1 \mathcal{R}_2$. Then $U = U_1 \langle t \rangle$, where $U_1 = [U, E_1]$. Let $\hat{R}_2 = U_1 \cap Y_1$. Standard arguments imply $R_2 = \hat{R}_2$ or $\hat{R}_2 / \mathcal{R}_2 \cong A_1$ as E_1-modules.

(6.6) Let $U_0 = [U_1, E]$, where $E = E_1^{-1}$.

(i) U_0 covers U_1 / \hat{R}_2.
(ii) U_1 / \hat{R}_2 is elementary abelian.
(iii) $[U_0, \hat{R}_2] = 1$.

Proof. (i) is clear as $U_1 / T_1 \hat{R}_2$ and $T_1 \hat{R}_2 / \hat{R}_2$ are equivalent E_1-modules.
Also, by (2.2), \(U_1/R_2\) is abelian. As the normal closure of \(E\) in \(Y\) centralizes \(R_2\), \(U_0\) is in \(C(R_2)\), proving (iii).

So \(U_0\) has class 2 and for \(x, y \in U_0\), \([x^2, y^2] = [x^4, y] \in [R_2, y] = 1\). If \(U_1/R_2\) is not elementary, this would imply \(T_1\) is abelian, which is absurd. This proves (ii).

(6.7) (i) \(R_2\) is elementary abelian, \(R_2 = \hat{R}_2\), and \(U'_1 = R_2\).
(ii) \(R_2\) and \(U_1\) are characteristic in \(U_1T_3A_0 = \hat{U}\).

Proof. Suppose that \(R_2\) is homocyclic of rank \(n\). As \(U_0\) has class 2 and \(\hat{R}_2 \cap U_0 < Z(U_0), x, y \in U_0\) implies that \(1 = [x^2, y] = [x, y]^2\). So \([U_0, U_0] < A_1\) and for \(x \in U_0\), \(|C_U(x)| > q^5\). Choose \(x \in T_1 - A_1\). Then \(t\) normalizes \(C_U(x)\) and \(|C_T(x)| = q^2\). Consequently, \(U_1 = T_1C_{U_0}(x)\). As \([U_1, t]R_2 = T_1R_2\), we obtain a contradiction by looking at \([t, C_U(x)]\). Namely, \(C_U(x)\) covers \(U_1/T_1R_2\), so

\[T_1R_2 = [t, U_1]R_2 = [t, C_U(x)]R_2.\]

On the other hand, \([t, C_U(x)] < C_{T_1R_2}(x)\), which does not cover \(T_1R_2/R_2\). So \(R_2\) is elementary and \(R_2 = \hat{R}_2\). Also the above argument shows that \(U'_1 = R_2\).

By (6.6) \(R_2 < Z(U_1)\). Also \([U_1, t]R_2 = T_1R_2\) and \(\hat{U}' < U_1\), so \(C_{\hat{U}'}(\hat{U}'') = R_2\), is \(t\)-invariant and intersects \(T_1\) in \(A_1\). This forces \(C_{\hat{U}''}(\hat{U}'') = R_2\), so \(R_2\) is characteristic in \(\hat{U}\). In \(\hat{U}/R_2\), \(U/R_2\) is unique of its isomorphism type, proving (ii).

(6.8) \(t^G \cap U_1\langle t \rangle = t^{U_1} = U_1t\).
(ii) \(T_3A_0 = T_3 \times A_0 > A_0\).

Proof. Both \(U_1/R_2\) and \(R_2\) are free \(F_2\langle t \rangle\)-modules, proving (i) (no conjugate of \(t\) centralizes \(R_2\), so \(t^G \cap U_1 = 0\)). If \(T_3A_0\) is cyclic, then from (6.7)(ii) and (i) we have \(S = U_1T_3A_0\). However, we can then transfer out \(T_3A_0\), contradicting (3.3). So \(T_3A_0\) is not cyclic and (ii) holds.

(6.9) \(S > U_1T_3A_0\).

Proof. Suppose that \(S = U_1(T_3 \times A_0)\). First assume that \(C_S(R_2) > U_1\). Then \(C_S(R_2) = U_1\langle k \rangle\), where \(\langle k \rangle\) or \(\langle kt \rangle\) is \(\Omega_1(T_3)\). By (3.5)(a) and transfer, \(G = O_2^2(G)A_0\) with \(O_2^2(G) \cap A_0 = 1\). Clearly \(U_1 < O_2^2(G)\), so \(U_1\langle l \rangle \in Syl_2(O_2^2(G))\) with \(\Omega_1(\langle l \rangle) = \langle k \rangle\) and \(k' = k\) or \(kt\). If \((k')^{O_2^2(G)} \cap U_1 = 0\), then we have a contradiction by transfer. So assume \((k')^{G} \cap U_1 \neq 0\). Involutions in \(U_1\) have centralizers of order at least \(q^4\) (as \(U'_1 = R_2\)). Since \(U_1/R_2\) is a free \(F_2\langle k' \rangle\)-module, each involution in \(U_1k'\) is conjugate to one in \(R_2k'\). Now \(C_{U_1}(k')\) does not cover \(C(k') \cap U_1/R_2\), since \(C_{T_1}(k') = A_1\). Consequently, elements of \((k')^{G} \cap U_1\langle k' \rangle\) that are extremal in \(U_1\langle l \rangle\) are all in \(U_1\). Choosing a Sylow 2-subgroup of \(C(k')\) and extending to a Sylow 2-subgroup of \(G\), we see that there is a conjugate \(U_f^g\) of \(U_1\) such that \(k' \in U_f^g\).
and \(t \in N(U_1) \). Since \(t \not\in U_1 \), both \(U_1/R_2 \) and \(R_2 \) are free \(F_2\langle \langle t \rangle \rangle \)-modules. It follows that \(|C(t) \cap U_1| = q^3 \). Modulo \(O(M) \), \(C(t) \cap U_1 = T_t \langle t, v \rangle \), where \(T_t \subset U_1 \) and has index 2 in \(T_t \). But \([k, T_t] \) is homocyclic of exponent 4, whereas \([k, U_1] \not\subset R_2 \). This is impossible.

We now have \(C_5(R_2) = U_1 \). Then both \(U_1/R_2 \) and \(R_2 \) are free modules for \(\langle t \rangle \), \(\langle v \rangle \), and \(\langle tv \rangle \), so we conclude that each involution in \(S - U_1 \) is conjugate in \(U_1 \) to one of \(t, v, tv \). The arguments of the previous paragraph show that \(t^G \cap U_1 = (tv)^G \cap U_1 = \emptyset \), and we know that \(t^G \cap U_1 = \emptyset \), as \(t \) cannot centralize a conjugate of \(R_2 \). Suppose \(t^G \cap U_1 = \emptyset \). Then apply the Thompson transfer theorem twice to conclude that \(U_1 \in \text{Syl}_2(U_1^G) \), which contradicts (3.3). So assume that \(t^g \in U_1 \langle v \rangle \) for some \(g \in G \). By the above we may assume that \(t^g = v \). Also we may assume \(g \) normalizes \(C_{M_1}(v)^{\langle \infty \rangle} \) and \(A_1 \). So \((A_1 \langle t \rangle)^g = A_1 \langle v \rangle \). A Sylow 2-subgroup of \(N_G(A_1 \langle v \rangle) \) is a conjugate of \(T_t R_2 T_3 \langle t \rangle \). Note that \(R_2 \leq N(A_1 \langle v \rangle) \). We claim that \(R_2 \) is strongly closed in \(T_t R_2 T_3 \langle t \rangle \) with respect to \(G \). Suppose \(r \in R_2 \) and \(r' \in T_t R_2 T_3 A_0 - R_2 \). Then \(r' \notin T_t R_2 \), as \(\Omega_4(T_t R_2) = R_2 \). So \([t, r'] \in T_t - A_1 \). However, \(\langle t, r' \rangle \) is dihedral, so \(t \) inverts \([t, r'] \). This is impossible. By the above we have now established the claim. So we may take \(g \in N(R_2) \). Now use (2.6) and Goldschmidt [11] to conclude that \(U_1 O(N_G(R_2)) \leq N_G(R_2) \). Consequently, we may assume \(g \in N(U_1) \).

It now follows that \(g \) can be chosen as a 3-element in \(N(S) \) and \(t \sim v \sim tv \). In particular, \(T_3 = \langle v \rangle \). Consider the group \(N = N_G(U_1) \) and let bars denote images in \(N/C_N(U_1/R_2) \). The group \(C_N(R_2) \) is 2-closed and \(\overline{E} = C_N(R_2) \). Also, since \(g \) normalizes \(A_1 \) and \(C_{M_1}(v)^{\langle \infty \rangle} \), we may assume \(g \) normalizes \(E_{1+1} \). Say \(\overline{H} \) is minimal normal in \(N \) with \(H \preceq C_N(R_2) \). \(\overline{H} \) is an elementary \(l \)-group for some prime \(l \). Then

\[
\overline{H} = C_{\overline{H}}(t)C_{\overline{H}}(v)C_{\overline{H}}(tv).
\]

But \(C_{\overline{H}}(t) \not\leq \overline{E} \) and \(C_{\overline{H}}(t) \cap C_{\overline{H}}(tv) = 1 \). So \(\overline{H} \) has order \(l^2 \). As \(E_{1+1} \) centralizes \(C_{\overline{H}}(t) \), we use the action of \(g \) to see that \(E_{1+1} \overline{H} = E_{1+1} \times H = B \). However, \(U_1/R_2 \) has at most 2 \(B \)-composition factors, as \(E_{1+1} \times C_{\overline{H}}(t) \) is irreducible on \(T_t R_2/R_2 \) and on \(U_1/T_t R_2 \). This implies \(B \) has rank at most 2, and we have a contradiction. This completes the proof of (6.9).

Let \(N_1 = N_G(U_1) \) and let bars denote images in \(N_1 \) modulo \(C_{N_1}(U_1/R_2) \). Write \(\langle v \rangle = \Omega_4(T_3) \). There is an element \(s \in N_5(U_1 T_3 A_0) \) such that \(t^s \not\in U_1 t \). Now \(s \) acts on \(T_3 A_0 U_1/U_1 = T_3 \times A_0 \). So if \(|T_3| > 2 \) we have \(t^s \in U_1 tv \). If \(|T_3| = 2 \) we rechoose \(T_3 \), if necessary, so that in all cases \(t^s \in U_1 tv \). Since each of \(R_2 \) and \(U_1/R_2 \) is a free \(F_2\langle \langle t^s \rangle \rangle \)-module, we may assume \(t^s = tv \). Then \(s \) normalizes \(\overline{N} = C_{\overline{M}}(t, t^s) \). So \(s \) normalizes \(\overline{E}_{00,0} \), where \(E_{00} = E_{1+1} \). Also \(s \) normalizes \(O(N_1) \geq \overline{E} \).

Now \([\overline{E}_{00}, \overline{E}] = [\overline{E}_{00}, \overline{E}^2] = 1 \), so that \(W = \langle \overline{E}_{00}, \overline{E}, \overline{E}^2 \rangle \) centralizes \(\overline{E}_{00} \). It
follows that \(V = U_1/R_2 \) may be regarded as an \(F_2 \)-module for \(W \) and that \(V \) is either irreducible under the action of \(W \) or the sum of two irreducibles. That is, \(V \) is the sum of irreducible submodules of dimension 1 or 2. Passing to splitting fields and noting that \(W \) has odd order, we see that each of the submodules splits into linear factors. Consequently, \(W \) is abelian.

Since \(t \) centralizes \(E \) and \(t^2 \) inverts \(E \), we know that \(EE^t = E \times E^t \). From here we see that \(V \) splits into a sum \(V = V_1 \oplus V_2 \) of inequivalent irreducible modules for \(E_1E^t = E_0 \times E \times E^t = W \).

This decomposition of \(V \) gives further information about \(U_1 \) as follows. As \(E_1 \) is fixed-point-free on \(V \), \(t \) cannot stabilize \(V_1 \) and \(V_2 \). For otherwise \(t \) would centralize \(W/C_w(V_i), i = 1, 2 \), which implies that \([W, t] = C_w(V_i) \cap C_w(V_j) = 1 \), a contradiction. So \(t \) interchanges \(V_1, V_2 \). Also \(t \) acts on \(\{V_1, V_2\} \) as \(s \in N(W) \). Consequently, \(t \in \langle s, t \rangle \) must fix each of \(V_1 \) and \(V_2 \).

For \(i = 1, 2 \) let \(F_i = C_{E_i}(V_i) \). Then \(F = F_1F_2 = EE^t \). Write \(J_i/R_2 = V_i \). Then for \(j \) in \(J_1, j \in J_2, [J_1, J_2] = [J_1, J_2] \) for each \(g \in F_i \). So \(J_2, F \) are \(C(J_1) \), and, as \(J_2, F_1 \) covers \(J_2/R_2 \), we conclude that \([J_1, J_2] = 1 \).

Let \(J_1 \) in \(J_1 \). As \(|J_1/R_2| = |R_2| = q^2, [J_1, J_1] < R_2 \). Suppose \(q \neq 8 \). Then \(F_2 \) is irreducible on \(J_1/R_2 \), and \(g \in F_2 \) implies \([J_1, J_1] = [J_2, J_1] \). So here \([J_1, J_1] < R_2 \), and using the fact that \([J_1, J_2] = 1 \) and the action of \(E_0 \), we have \([J_1] = q \). If \(q = 8 \) an easy Lie ring argument shows that \([J_1] = 8 \). Similarly, \([J_2] = q \). Setting \(Y_t = [J_1, E] \) and using (6.7) we now have \(U_1 = Y_1 \times Y_2 \) with \(t \) interchanging \(Y_1 \) and \(Y_2 \).

Since \(t \) is an involution, \(Y_1 \simeq Y_2 \simeq C_{U_1}(t) = T_1 \). Hence \(R_2 = \Omega_{1}(U_1) \). The Krull-Schmidt theorem implies that \(\{Y_1Z(U_1), Y_2Z(U_1)\} \) is invariant under \(N_G(U_1) = N_1 \). Also

\[
N_1 = N_{11}(Y_1Z(U_1)) \langle t \rangle, \quad N_0 = N_{11}(Y_1Z(U_1)) < N_1.
\]

We choose \(T_3 \) and \(s \) so that \(\langle T_3, s \rangle < N_0 \). Note that \(s \) and \(v \) normalize \(E_0 \), \(Y_1 \), and \(Y_2 \). Also \(F_1 = F_1 \times F_2 = E \times E^t \). Let \(\tilde{P}_1 \) be a Sylow \(p \)-subgroup of \(\tilde{F}_1 \), where \(p = 3 \) if \(q = 8 \) and \(p \) a primitive divisor of \(q + 1 \) if \(q \neq 8 \). Then \(\tilde{s} \) must centralize one of \(\tilde{P}_1 \) and \(\tilde{P}_2 \) and invert the other. Say \(\tilde{s} \) centralizes \(\tilde{P}_1 \). Then \(\tilde{P}_1 \) normalizes \(\langle \tilde{s}, V_2 \rangle \). If \(\tilde{s} \notin C(E_0) \), then considering the Frobenius group \([E_0, \tilde{s}] \langle \tilde{s} \rangle \), we conclude that \(V_2 \) is a free \(F_2 \langle \langle \tilde{s} \rangle \rangle \)-module. But then \(\tilde{P}_1 \) cannot act on \(\langle V_2, \tilde{s} \rangle \). Therefore \(\tilde{s} \) centralizes \(E_0 \) and, as \(\tilde{E}_0 \tilde{P}_1 \) is irreducible on \(V_2, \tilde{s} \in C(V_2) \). This forces \(\tilde{s} \in C(\tilde{F}_1) \).

Now consider the action of \(\langle E_0, s, v \rangle \) on \(R_2 \) to get \(\langle s, v \rangle \leq C(R_2) \). Further, an application of the 3-subgroups lemma to \(\langle s \rangle, Y_2 \) and \(F_1 \) shows that \([s, Y_2] = 1 \).

We know that \(\Omega_{1}(T_3) \langle t \rangle \) is a Sylow 2-subgroup of \(C_{\tilde{C}}(t) \), so the Sylow 2-subgroups of \(C(t) \)(and \(U_1 \)) are dihedral or quasidihedral, where \(C = N(U_1) \cap C(R_2) \). Now \(C \cap C(Y_i) \leq C \) for \(i = 1, 2 \), and from these facts we see that \(\langle s, v \rangle U_1 \in \text{Syl}_2(C) \), \(\langle s, v \rangle U_1/U_1 \) is klein, and \(C/U_1 \) has 2-complement
Let \(C_i = C_N(Y_i) \) so that \(F_i \subset C_i \). Then \([C_1, C_2] \subset C(U_1)\) and \([C_1, C_2] = 1\). As \(C_2 \supseteq C_1, C_1 C_2 \supseteq C_1 C(t)\). This shows that \(F_1 F_2 = O(C(C_0)) \). Let \(C_i \), \(C_j \). Let \(C_i \), \(C_j \).

As \(U_1 < C < C(R_2) \) implies that \(U_1 \cap U_1 < C \), and the involutions in \(U_1 < C \), \(v^t \) are in \(U_1 \setminus U_1 \). As \(U_1 \) is irreducible on \(Y_2 \). As \(N_0 < C(F_1), N_0 \) induces a cyclic group on \(V_2 \). Similarly for \(V_1 \). So \(N_0 \) is abelian of odd order and of rank at most 2. Since \(C(t) \) covers \(C(t) \), \(N_0 \), \(N_0 \) has Sylow 2-subgroups of rank 2. It is now easy to check that \(U_1 \) is characteristic in \(S \), so \(S = S \cap N_1 \subset Syl_2(G) \).

As \(\Omega_1(S \cap N_0) < U_1 < C(R_2), t^G \cap (S \cap N_0) = \emptyset \), and we apply transfer to obtain a subgroup \(G_0 \) of index 2 in \(G \) with \(U_1 < G_0 \). Considering the action of \(t \) on a Sylow 2-subgroup of \(C_G(v) \), we see that \(v^G \cap U_1 < S > = G_0 \). Again we can apply transfer to get \(v \not\in G' \). But then \(s^t \not\in s V_1 \) implies that \(U_1 \subset Syl_2(G') \), contradicting (3.3).

We have now completed the proof of the main theorem.

Bibliography

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104
Department of Mathematics, University of Cambridge, Cambridge, England
Department of Mathematics, University of Oregon, Eugene, Oregon 97403