BOUNDED POINT EVALUATIONS AND SMOOTHNESS PROPERTIES OF FUNCTIONS IN $R^p(X)$

BY

EDWIN WOLF

ABSTRACT. Let X be a compact subset of the complex plane \mathbb{C}. We denote by $R_0(X)$ the algebra consisting of the (restrictions to X of) rational functions with poles off X. Let m denote 2-dimensional Lebesgue measure. For $p > 1$, let $L^p(X) = L^p(X, dm)$. The closure of $R_0(X)$ in $L^p(X)$ will be denoted by $R^p(X)$. Whenever p and q both appear, we assume that $1/p + 1/q = 1$.

If x is a point in X which admits a bounded point evaluation on $R^p(X)$, then the map which sends f to $f(x)$ for all $f \in R_0(X)$ extends to a continuous linear functional on $R^p(X)$. The value of this linear functional at any $f \in R^p(X)$ is denoted by $f(x)$. We examine the smoothness properties of functions in $R^p(X)$ at those points which admit bounded point evaluations. For $p > 2$ we prove in Part I a theorem that generalizes the "approximate Taylor theorem" that James Wang proved for $R(X)$.

In Part II we generalize a theorem of Hedberg about the convergence of a certain capacity series at a point which admits a bounded point evaluation. Using this result, we study the density of the set X at such a point.

PART I. SMOOTHNESS PROPERTIES OF FUNCTIONS IN $R^p(X)$

Let X be a compact subset of the complex plane \mathbb{C}. We denote by $R_0(X)$ the algebra consisting of the (restrictions to X of) rational functions with poles off X. Let m denote 2-dimensional Lebesgue measure. For $p > 1$, let $L^p(X) = L^p(X, dm)$. The closure of $R_0(X)$ in $L^p(X)$ will be denoted by $R^p(X)$. Whenever p and q both appear, we will assume that $1/p + 1/q = 1$.

1. Bounded point derivations.

Definition (1.1). For $x \in X$ we say that x admits a bounded point derivation of order s on $R^p(X)$ if there exists a constant C such that $|f^{(s)}(x)| \leq C\|f\|_p$ for all $f \in R_0(X)$.

When x admits a bounded point derivation of order s on $R^p(X)$, the map $f \mapsto f^{(s)}(x)/s!$ extends from $R_0(X)$ to a bounded linear functional on $R^p(X)$.
We denote this bounded linear functional by D_x.

Definition (1.2). When x admits a bounded point derivation of order 0, we say that x admits a *bounded point evaluation*. For $f \in R^p(X)$ we define $f(x) = D_x^0 f$.

Definition (1.3). For each $p > 2$ the *inner set* for $R^p(X)$ is the set of points in X which admit bounded point evaluations, and we denote it by $S^p(X)$.

Proposition (1.1). For each $p > 2$, $S^p(X)$ is an $F_σ$ set.

Proof. Write $S^p(X) = \bigcup_{n=1}^{\infty} S^n_p(X)$ where

$$S^n_p(X) = \{x \in X | |f(x)| < n\|f\|_p \text{ for all } f \in R^p(X)\}.$$

We show that each set $S^n_p(X)$ is closed. Suppose that $\{x_k\} \subset S^n_p(X)$ and that $x_k \to x \in X$. Let $L_{x_k} f = f(x_k)$ and observe that the L_{x_k} are a family of linear functionals bounded in norm by n. Since $L_{x_k} f \to f(x)$ for $f \in R_0(X)$, and $R_0(X)$ is dense in $R^p(X)$, it follows that $x \in S^n_p(X)$. Thus each $S^n_p(X)$ is closed.

2. **Potentials and representing functions.** In this paper z will denote the identity function.

Definition (2.1). Let ψ be a positive nondecreasing function on $(0, \infty)$. For each $g \in L^q(X)$, $q > 1$, we define the ψ-potential of g, U^ψ_g, by

$$U^\psi_g (y) = \int \frac{|g|}{\psi(|z - y|)} \, dm.$$

If $1/\psi(|z|)$ is locally summable with respect to m, Fubini’s theorem implies that U^ψ_g is locally summable; hence $U^\psi_g < \infty$ a.e. (m).

Definition (2.2). When $\psi(r) = r$, we denote U^ψ_g by \hat{g}.

Definition (2.3). When $\psi(r) = r^q$, $1 < q < 2$, we denote U^ψ_g by U^q_g.

Definition (2.4). We define the Cauchy transform of g to be

$$\hat{g}_0 (y) = \int (z - y)^{-1} g \, dm \quad \text{for all } y \text{ where } \hat{g}_0 (y) < \infty.$$

For the proof of the following lemma we refer the reader to Sinanjan [16] or Brennan [1, pp. 10-11]. Brennan’s proof uses the Cauchy transform.

Lemma (2.1). Let $X \subset C$ be compact and have no interior. Then $R^p(X) = L^p(X)$ for $1 < p < 2$.

It follows from the Riesz representation theorem that if $x \in S^p(X)$, then there is a $g \in L^q(X)$ such that $f(x) = \int fg \, dm$ for all $f \in R^p(X)$. We call such a g a *representing function* for x. If $R^p(X) \neq L^p(X)$, there is a nonzero function $g \in L^q(X)$ such that $\int fg \, dm = 0$ for all $f \in R^p(X)$. We call such a g an annihilating function.
The following lemma was proved by Bishop for the sup norm case: We assume that $1 < q < 2$.

Lemma (2.2). Let $g \in L^q(X)$ be an annihilating function. Suppose that $\hat{g}(y)$ is defined and $\neq 0$, and that $(z - y)^{-1}g \in L^q(X)$. Then $\hat{g}(y)^{-1}(z - y)^{-1}g$ is a representing function for y.

Proof. If $f \in R_0(X)$, then $f = f(y) + (z - y)h$ for some $h \in R_0(X)$. Hence
\[
\int (z - y)^{-1}fg\,dm = f(y)\hat{g}(y) + \int hg\,dm = f(y)\hat{g}(y).
\]

Corollary (2.1). Let $g \in L^q(X)$ be a representing function for x. Let
\[
c(y) = \int (z - x)(z - y)^{-1}g\,dm = 1 + (y - x)\hat{g}(y).
\]
Then $c(y)^{-1}(z - x)(z - y)^{-1}g$ is a representing function for y whenever $c(y)$ is defined and $\neq 0$.

Proof. $(z - x)g$ is an annihilating function.

We now present a lemma of Brennan in [2, p. 288] which will be very useful.

Lemma (2.3). If $p > 2$, then $R^p(X) \neq L^p(X)$ if and only if $S^p(X)$ has positive 2-dimensional measure.

Proof. Suppose that $S^p(X) \neq \emptyset$ and $x \in S^p(X)$ is represented by a nonzero function $g \in L^q(X)$. Then $R^p(X) \neq L^p(X)$ because $(z - x)g \in L^q(X)$, and $\int (z - x)gf\,dm = 0$ for all $f \in R^p(X)$.

Now suppose that $R^p(X) \neq L^p(X)$ and let $g \in L^q(X)$ be a nonzero annihilating function. Then \hat{g} fails to vanish on a set of positive measure in X. Hence there is a set $S \subset X$ of positive measure such that for $y \in S$, $\hat{g}(y) \neq 0$ and $\hat{g}(y)^{-1}(z - y)^{-1}g \in L^q(X)$. It follows from Corollary (2.1) that $S \subset S^p(X)$, and the lemma is proved.

Remark. If we know that there is an $x \in S^2(X)$, the difficulty in showing that there are other points in $S^2(X)$ by the above method is that $z^{-1} \not\in L^2_{\text{loc}}$.

3. **Admissible functions.** Fix $x \in C$ and let $\Delta_n = \{y \in C: |y - x| < 1/n\}$. We say that a set $E \subset C$ has full area density at x if $\lim_{n \to \infty}m(E \cap \Delta_n)/m(\Delta_n) = 1$. Let F be a function defined on X, $x \in X$. We say that a is the approximate limit of F at x, and write $\text{app lim}_{y \to x}F(y) = a$ if there exists a subset E of X having full area density at x, such that $\lim_{y \to x}F(y) = a$. We say that F is approximately continuous at x if $\text{app lim}_{y \to x}F(y) = F(x)$.

If ϕ is a positive function on $(0, \infty)$ with $\lim_{r \to 0}\phi(r) = 0$, we say that F admits ϕ as a modulus of approximate continuity at x if $|F(y) - F(x)| < \phi(|y - x|)$.
EDWIN WOLF

\(\phi(|y - x|) \) for all \(y \) in a set having full area density at \(x \). We say that \(F \) satisfies an approximate Hölder condition of order \(\alpha \) at \(x \) if \(F \) admits \(C^{r^\alpha} \) as a modulus of approximate continuity at \(x \) for some constant \(C \).

Definition (3.1). We say that \(\phi \) is an admissible function if
(a) \(\phi \) is a positive, nondecreasing function defined on \((0, \infty)\), and
(b) the associated function \(\psi \), defined by \(\psi(r) = r/\phi(r) \), is nondecreasing, with \(\psi(0 +) = 0 \).

Example. For any \(\alpha, 0 < \alpha < 1 \), \(\phi(r) = r^\alpha \) is admissible.

Remarks. 1. If \(\phi \) is admissible and \(0 < \beta < 1 \), then \(\phi^\beta \) is also admissible because
\[r/\phi^\beta(r) = (r/\phi(r)) \cdot \phi^{1-\beta}(r). \]

2. In using an admissible function \(\phi \) we will often refer to the triangle inequality: \(\phi(r) \leq \phi(r_1) + \phi(r_2) \) whenever \(r \leq r_1 + r_2 \). This follows from the definition of an admissible function since
\[\phi(r) \leq \phi(r_1 + r_2) = (r_1 + r_2)/\psi(r_1 + r_2) \leq r_1/\psi(r_1) + r_2/\psi(r_2) = \phi(r_1) + \phi(r_2). \]

Wang introduced a special kind of admissible function in [17, p. 349].

Definition (3.2). We say that the admissible function \(\phi \) is nice if
\[\int_0^{\infty} \phi(r)^{-q} dr < \infty. \]

For each \(q, 1 < q < 2 \), we will be interested in a subset of the set of nice admissible functions.

Definition (3.3). We say that the admissible function \(\phi \) is \(q \)-nice if
\[\int_0^{\infty} (q/\phi(r))^{-q} dr < \infty. \]

Note that a nice admissible function is \(1 \)-nice and that \(\phi(r) = r^\alpha \) is \(q \)-nice for \(\alpha < (2 - q)/q \). When \(p > 2 \), the \(q \)-nice admissible functions will be the most likely ones to be moduli of approximate continuity for functions in the unit ball of \(R^p(X) \) at points in \(S^p(X) \).

The following lemma is due to Wang [17]:

Lemma (3.1). Let \(g \in L^q(X), q \geq 1 \), and let \(x \in X \). Then there exists a nice admissible function \(\phi \) with \(\phi(0 +) = 0 \) such that \(\phi(|z - x|)^{-1}g \in L^q(X) \).

Proof. See Wang [17].

Our proof of the next lemma is in the spirit of Browder’s result [3, p. 157]. It will be useful for studying the density of \(X \) at points in \(S^p(X) \). Let \(E \subseteq X \) be measurable. Define \(\rho_n \) by \(\pi \rho_n^2 = m(\Delta_n \setminus E) \). Denote \(m|\Delta_n \setminus E \) by \(m_n \).

Lemma (3.2). Let \(\psi \) be associated with an admissible \(\phi \). For \(q, 0 < q < 2 \), let \(\tau = \psi^q \). Then if \(g \in L^1(X) \),
\[\lim_{n \to \infty} \frac{n^q}{\rho_n^{2-q}} \int \tau(|y - x|)U_g^*(y) \, dm_n(y) = 0. \]
FUNCTIONS IN $R^p(X)$

Proof. Define

$$F_n(\xi) = n^q \rho_n^{q-2} \int \psi(|y - x|) \cdot \psi(|\xi - y|)^{-q} \, dm_n(y).$$

Then $F_n(x) < \infty$ and if $\xi \neq x$, we have for large n

$$|F_n(\xi)| < n^q \rho_n^q \psi(n^{-1})^q \cdot \psi(|x - \xi| - n^{-1})^q \to 0 \quad \text{as } n \to \infty.$$

Next, we will show that the F_n are bounded independently of n. Let $D_n = \Delta(\xi, \rho_n)$. Since ψ^q is increasing,

$$|F_n(\xi)| \leq n^q \rho_n^{q-2} \psi(n^{-1})^q \int \psi(|y - \xi|)^{-q} \, dm_n(y)$$

$$\leq n^q \rho_n^{q-2} \psi(n^{-1})^q \int_{D_n} \psi(|y - \xi|)^{-q} \, dm(y)$$

$$= 2\pi n^q \rho_n^{q-2} \psi(n^{-1})^q \int_0^{\rho_n} \psi(r)^{-q} \, dr$$

$$< 2\pi n^q \rho_n^{q-2} \psi(n^{-1})^q \phi(\rho_n)^q \int_0^{\rho_n} r^{1-q} \, dr$$

$$= 2\pi n^q \rho_n^{q-2} \psi(n^{-1})^q \phi(\rho_n)^q \rho_n^{2-q}(2-q)^{-1}$$

$$< 2\pi(2-q)^{-1}.$$

Thus, the F_n converge boundedly a.e. to zero. We apply the dominated convergence theorem and Fubini's theorem to obtain the lemma.

Lemma (3.3). Let ψ be associated with an admissible ϕ. For $0 < q < 2$, let $\tau = \psi^q$. Then if $g \in L^q(X)$, and $\delta > 0$, the set $E = \{ y \in \mathbb{C} : \tau(|y - x|) U^\tau(g)(y) < \delta \}$ has full area density at x.

Proof. It is sufficient to prove that $\lim_{n \to \infty} m(\Delta_n \setminus E) / m(\Delta_n) = 0$ where $\Delta_n = \Delta(x, 1/n)$. We observe that since

$$m(\Delta_n \setminus E) \leq \delta^{-1} \int_{\Delta_n} \tau(|y - x|) U^\tau(g)(y) \, dm(y),$$

it is sufficient to prove that

$$\lim_{n \to \infty} n^2 \int_{\Delta_n} \tau(|y - x|) U^\tau(g)(y) \, dm(y) = 0.$$

This follows from Lemma (3.2) if we take E in that lemma to be the empty set.

4. The main theorem. The following lemma in the sup norm case is due to Wilken [20]. For $x \in S^p(X)$, $p > 2$, it gives a condition for x to admit a bounded point derivation of order s.

Lemma (4.1). Suppose there exist a representing function $g \in L^q(X)$ for
Let \(x \in S^p(X) \), \(p > 2 \), and a nonnegative integer \(s \) such that \((z - x)^{-s}g \in L^q(X) \). Let \(c_j = \int (z - x)^{-j} g \ dm \) \((0 < j < s)\) and define \(G_0, \ldots, G_s \) by:

\[
G_0 = g, \quad G_j = (z - x)^{-j} g - \sum_{k < j} c_{j-k} G_k.
\]

Then \(D_x f \) exists, and \(D_x f = \int f G_j \ dm \) for all \(f \in R^p(X), 0 < j < s \).

An additional lemma will be needed in proving the theorem.

Lemma (4.2). Let \(s \) be a nonnegative integer, and \(g \in L^q(X), 1 < q < 2 \). Suppose that \((z - x)^{-s}g \in L^q(X) \). Set \(H_j = (z - x)^{-j} g \) \((0 < j < s)\). For any \(f \in L^p(X) \) and \(y \in C \)

\[
\int (z - y)^{-1} f g \ dm = \sum_{j=1}^s (y - x)^{j-1} \int f H_j \ dm + (y - x)^{s} \int (z - y)^{-1} f H_s \ dm.
\]

Proof. Since \(H_j = (z - x) H_{j+1} \) for \(0 < j < s \),

\[
\int (z - y)^{-1} f H_{j} \ dm = \int f H_{j+1} \ dm + (y - x) \int (z - y)^{-1} f H_{j+1} \ dm
\]

which implies the lemma.

Our main theorem generalizes the “approximate Taylor’s theorem” which Wang obtained for functions in \(R(X) \) \([17, p. 352]\).

Theorem (4.1). Let \(\phi \) be an admissible function and \(s \) a nonnegative integer. Suppose that \(p > 2 \) and that there is an \(x \in S^p(X) \) represented by a \(g \in L^q(X) \) such that \((z - x)^{-s} \phi(|z - x|) \in L^q(X) \). Then for every \(\epsilon > 0 \) there is a set \(E \) in \(X \) having full area density at \(x \) such that for every \(f \in R^p(X) \)

(i) \(f = \sum_{j=0}^s D_{x}^j f(z - x)^j + R \) where \(R \in R^p(X) \) satisfies

(ii) \(|R(y)| < \epsilon |y - x|^s \phi(|y - x|) \| f \|_p \) for all \(y \in E \), and

(iii) \(\text{app lim}_{y \to x} \{ R(y)/|y - x|^s \phi(|y - x|) \} = 0 \).

Proof. Since \((z - x)^{-s}g \in L^q(X) \), Lemma (4.1) implies that the \(D_x^j \) exist for \(0 < j < s \). To each \(D_x^j \), \(0 < j < s \), there corresponds a constant \(C_j \) such that \(|D_x^j f| < C_j \| f \|_p \) for all \(f \in R^p(X) \). By Minkowski's inequality there is another constant \(C \) such that if \(R \) is defined as in (i), \(\| R \|_p < C \| f \|_p \) for all \(f \in R^p(X) \).

Choose \(\delta > 0 \) so that \(0 < C \delta (1 - \delta)^{-1} < \epsilon / 2 \). If \(y \in E_1 = \{ y \in C : |y - x| \hat{g}(y) < \delta \} \), then \(c(y) = 1 + (y - x) \hat{g}(y) \) is well defined, and \(|c(y)| > 1 - \delta \). By Corollary (2.1),
\[
R(y) = c(y)^{-1} \int \left[R(z - x)/(z - y) \right] g \, dm \\
= c(y)^{-1} \int R[1 + (y - x)/(z - y)] g \, dm \\
= c(y)^{-1}(y - x) \int [R/(z - y)] g \, dm.
\]

Next, we claim that \(R(y) = c(y)^{-1}(y - x)^{t+1}(z - x)^{-s}(z - y)^{-1}Rg \, dm \). This claim depends on Lemma (4.2). Each of the functions \((z - x)^{-j}g \), \(0 < j < s \), is a linear combination of functions representing \(D_x^k \), \(0 < k < j \), which implies that \(f(z - x)^{-j}Rg \, dm = 0 \) for \(0 < j < s \), and the claim is proved.

Factoring \(g = \phi(|z - x|)h \) where \(h \in L^q(X) \), we obtain by the “triangle inequality” that
\[
|g| \leq \phi(|z - y|)|h| + \phi(|y - x|)|h|.
\]

Consequently,
\[
|R(y)| \leq c(y)^{-1}|y - x|^{t+1} \left[\int |z - y|^{-1}|z - x|^{-s} \phi(|z - y|) |Rh| \, dm \\
+ \int |z - y|^{-1}|z - x|^{-s} \phi(|y - x|) |Rh| \, dm \right].
\]

Denote the first integral by \(I_1 \) and the second by \(I_2 \). We have
\[
I_1 = |c(y)|^{-1}|y - x|^{t+1} \int |z - y|^{-1}|z - x|^{-s} \phi(|y - x|) \psi(|y - x|) \int \psi(|z - y|)^{-1}|z - x|^{-s} |Rh| \, dm.
\]

Let \(\tau = \psi^q \), \(k = (z - x)^{-q}h^q \), and
\[
E_2 = \{ y \in \mathbb{C}: \tau(|y - x|) U_k^i(y) < \delta^q \}.
\]

For \(y \in E_2 \) we apply Hölder’s inequality to obtain
\[
I_1 \leq (1 - \delta)^{-1}|y - x|^{t+1} \phi(|y - x|) \psi(|y - x|) \int |R|^{p} \, dm \right)^{1/p} \{ U_k^i(y) \}^{1/q}
\leq (1 - \delta)^{-1}|y - x|^t \phi(|y - x|) C \| f \|_p \delta
\leq (\varepsilon/2)|y - x|^t \phi(|y - x|) \| f \|_p.
\]

To estimate \(I_2 \) we define
\[
E_3 = \{ y \in \mathbb{C}: |y - x|^q \leq \delta^q \} \quad \text{and let } y \in E_2 \cap E_3.
\]

By Hölder’s inequality,
By Lemma (3.3) the set \(E = E_2 \cap E_3 \) has full area density at \(x \), and we have proved that for \(y \in E \)

\[
|R(y)| \leq I_1 + I_2 \leq \varepsilon |y - x| \phi(|y - x|) \|f\|_p
\]

for any \(f \in R^p(X) \). To prove (iii) let \(L_y f = R(y)/|y - x| \phi(|y - x|) \). The above result implies that \(\|L_y\| \leq \varepsilon \) for \(y \in E \). Let \(y \to x \) in such a way that \(y \) stays in \(E \). Then \(L_y f \to 0 \) as \(y \to x \) for \(f \in R_0(X) \), and since \(R_0(X) \) is dense in \(R^p(X) \), (iii) follows.

An interesting consequence of the above theorem is that we can take the limit of Newton quotients in the set \(E \) to evaluate \(D_y f \). For \(f \) a function defined on a subset of \(X \), \(h \in C \), we set

\[
\Delta_h f = f(z + h) - f
\]

so \(\Delta_h f \) is a function defined on a subset of \(X \). We define inductively \(\Delta_h^0 = \text{id}, \Delta_h^j = \Delta_h \circ \Delta_h^{-1} \) for \(j > 1 \). The sup norm version of the following corollary is proved in [17].

Corollary (4.1). If \(x \) admits a bounded point derivation of order \(s \) on \(R^p(X), p > 2 \), then for all \(f \in R^p(X) \)

\[
\Delta_h^s f = \text{app lim}_{h \to 0} \frac{\Delta_h^s f(x)}{s! h^s}.
\]

Lemma (4.3). Let \(\phi \) be a \(q \)-nice admissible function. If \(x \in S^p(X), p > 2 \), then \(\{y \in X: \exists \text{ a function } g_y \text{ that represents } y \text{ for } R^p(X) \text{ and satisfies } \phi(|z - y|)^{-1} g_y \in L^q(X)\} \) has full area density at \(x \).

Proof. Let \(g \in L^q(X) \) represent \(x \).

Let

\[
F = \left\{ y \in C: \int |z - y|^{-q} \phi(|z - y|)^{-q} |g|^q \, dm < \infty \right\}.
\]

Since \(|z|^{-q} \phi(|z|)^{-q} \) is locally summable with respect to \(m, m(C \setminus F) = 0 \). Fix \(\delta, 0 < \delta < 1 \), and put \(E = F \cap E_1 \) where \(E_1 = \{ y \in C: |y - x| \bar{g}(y) < \delta \} \).

By Lemma (3.3) the set \(E \) has full area density at \(x \). For each \(y \in E \) the function \(g_y = c(y)^{-1}[(z - x)/(z - y)] g \) represents \(y \). Moreover,
\[
\int \phi(|z - y|)^{-q} |g_y|^q \, dm = |c(y)|^{-q} \int |z - y|^{-q} \phi(|z - y|)^{-q} |z - x|^q |g|^q \, dm \\
\leq C \int |z - y|^{-q} \phi(|z - y|)^{-q} |g|^q \, dm < \infty.
\]

This proves the lemma.

Corollary (4.2). Suppose that \(\phi \) is \(q \)-nice. Then at almost every point of \(S^p(X) \), \(p > 2 \), the functions in the unit ball of \(R^p(X) \) admit \(\phi \) as a modulus of approximate continuity.

Proof. Combine Theorem (4.1) with Lemma (4.3).

In particular, it follows that at a.e. \(x \in S^p(X) \), \(p > 2 \), the unit ball of \(R^p(X) \) satisfies an approximate uniform Hölder condition of order \(\alpha \) for every \(\alpha < (2 - q)/q \).

Lemma (4.4). Let \(\phi \) be admissible and \(g \in L^q(X) \), \(1 < q < 2 \). Then if \(\phi(|z - x|)^{-1} g \in L^q(X) \), \(\delta > 0 \), and

\[
E = \left\{ y \in C : |y - x|^q \int |y - z|^{-q} |g|^q \, dm < \delta \right\},
\]

it follows that \(m(\Delta_n \setminus E) = o(n^{-1})^2 / n^2 \).

Proof. We observe that

\[
m(\Delta_n \setminus E) \leq \delta^{-1} \int |y - x|^q \int |z - y|^{-q} |g|^q \, dm \, dm_n(y).
\]

Factor \(g = \phi(|z - x|) h \) where \(h \in L^q(X) \). Then

\[
|g|^q \leq C \left[\phi(|z - y|)^q |h|^q + \phi(|y - x|)^q |h|^q \right]
\]

where \(C \) is some constant. We have

\[
m(\Delta_n \setminus E) \leq \delta^{-1} C \left[\int |y - x|^q \int |z - y|^{-q} \phi(|z - y|)^q |h|^q \, dm \, dm_n(y) \\
+ \int |y - x|^q \int |z - y|^{-q} \phi(|y - x|)^q |h|^q \, dm \, dm_n(y) \right].
\]

By substituting \(|y - x|^q = \phi(|y - x|)^q \psi(|y - x|) \) in the first integral, and using the fact that \(\phi(|y - x|)^q \leq \phi(n^{-1})^q \) for \(y \in \Delta_n \), we obtain

\[
m(\Delta_n \setminus E) \leq \delta^{-1} C \phi(n^{-1})^q \psi(|y - x|)^q \int \psi(|z - y|)^{-q} |h|^q \, dm \, dm_n(y) \\
+ \int |y - x|^q \int |z - y|^{-q} |h| \, dm \, dm_n(y).
\]

Let \(A_n \) denote the sum of the two integrals on the right. Replacing \(m(\Delta_n \setminus E) \) by \(\pi^2 \rho_n^2 \), we obtain

\[
\pi \rho_n^2 \leq \delta^{-1} C \phi(n^{-1})^q \rho_n^2 - q \rho_n^{-q} (A_n).
\]
where \(\lim_{n \to \infty} A_n = 0 \) by Lemma (3.2). Divide both sides by \(p_n^{2-q} \) to get

\[
\pi p_n^{2-q} \leq \delta^{-1} C \phi(n^{-1})^q n^{-q} (A_n).
\]

Now raise both sides to the power \(2/q \), and the conclusion of the lemma follows.

In the next corollary we consider functions \(f \in R^p(X) \) to be defined on \(C \) by setting \(f(x) = 0 \) for \(x \not\in X \).

Corollary (4.3). Let \(\epsilon > 0 \). If \(x \in S^p(X) \), \(p > 2 \), is represented by \(g \in L^q(X) \), and \((z - x)^{-\alpha} g \in L^q(X) \) for some \(\alpha > q - 1 \), then there is an integer \(N_x \) depending on \(x \) such that for \(n > N_x \)

\[
m(\Delta_n)^{-1} \int_{\Delta_n} |f - f(x)| \, dm \leq \epsilon \|f\|_p \quad \text{for all } f \in R^p(X).
\]

Proof. Let \(E \) be the set in the conclusion of Theorem (4.1) when \(\epsilon/2 \) and \(x \in S^p(X) \) are given and \(\phi(r) \equiv 1 \).

\[
m(\Delta_n)^{-1} \int_{\Delta_n} |f - f(x)| \, dm
\]

\[
\leq m(\Delta_n)^{-1} \left[\int_{\Delta_n \cap E} |f - f(x)| \, dm + \int_{\Delta_n \setminus E} |f - f(x)| \, dm \right]
\]

\[
\leq (\epsilon/2) \|f\|_p m(\Delta_n)^{-1} m(\Delta_n \cap E) + \pi^{-1} n^2 \int_{\Delta_n \setminus E} |f - f(x)| \, dm
\]

\[
\leq (\epsilon/2) \|f\|_p + \pi^{-1} n^2 \int_{\Delta_n \setminus E} |f - f(x)| \, dm.
\]

Let \(\chi_{\Delta_n \setminus E} \) be the characteristic function of \(\Delta_n \setminus E \). Then by Hölder's inequality,

\[
\pi^{-1} n^2 \int_{\Delta_n \setminus E} |f - f(x)| \, dm = \pi^{-1} n^2 \int \chi_{\Delta_n \setminus E} |f - f(x)| \, dm
\]

\[
\leq C n^2 \left[m(\Delta_n \setminus E) \right]^{1/q} \|f\|_{L^q(\Delta_n \setminus E)}
\]

where \(C \) is a constant. By Lemma (4.4)

\[
\left[m(\Delta_n \setminus E) \right]^{1/q} = o(n^{-(2/q) - (2\alpha/q)}).
\]

Thus if \(\alpha > q - 1 \), we can choose an integer \(N_x \) so that \(n > N_x \) implies that \(C n^2 [m(\Delta_n \setminus E)]^{1/q} < \epsilon/2 \). Hence,

\[
m(\Delta_n)^{-1} \int_{\Delta_n} |f - f(x)| \, dm \leq (\epsilon/2) \|f\|_p + (\epsilon/2) \|f\|_{L^p(\Delta_n \setminus E)}
\]

\[
\leq \epsilon \|f\|_p.
\]

This completes the proof.
FUNCTIONS IN $R^p(X)$

Corollary (4.4). If $p > 2 + \sqrt{2}$, then for a.e. $x \in S^p(X)$,

$$
\lim_{n \to \infty} m(\Delta_n)^{-1} \int_{\Delta_n} |f - f(x)| \, dm = 0 \quad \text{for any } f \in R^p(X).
$$

Proof. This follows from Lemma (4.3) and Corollary (4.3).

Given $f \in L^1(dm)$, the set of points $x \in C$ such that

$$
\lim m(\Delta_n)^{-1} \int_{\Delta_n} |f - f(x)| \, dm = 0
$$

is called the Lebesgue set of f. For an arbitrary $f \in L^1(dm)$, a.e. (m) point $x \in C$ belongs to the Lebesgue set of f (see [5, p. 156]). The above corollary identifies points belonging to the Lebesgue sets of all $f \in R^p(X)$. It would be interesting to know whether the corollary holds for $p > 2$.

Part II. Capacity and bounded point evaluations

1. **Capacity theorems.** Before proving a capacity result about bounded point evaluations, we will need two lemmas of Hedberg [9]. Let Ω denote the complex plane when $p > 2$ and the unit disk when $p = 2$.

Definition (1.1). Let $A' \subset \Omega$ be a compact set. Then

$$
\Gamma_q(A') = \inf \int |\text{grad } \omega|^q \, dm
$$

where the inf is taken over Lipschitz functions ω with compact support contained in Ω such that $\omega(z) > 1$ on A'.

For noncompact sets F, q-capacity is defined by $\Gamma_q(F) = \sup_{K \subset F} \Gamma_q(K)$, K compact.

Let U be an open set (bounded if $p = 2$) in the complex plane and denote by L_p^U the space of analytic functions in L_p^U. If f is analytic in $\Omega \setminus X$ where $X \subset \Omega$ is compact, we write $\alpha(f) = (2\pi i)^{-1} \int_C f(z) \, dz$ where C is any Jordan curve in Ω enclosing X.

Lemma (1.1). Let $X \subset \Omega$ be compact. Then there are positive constants C_1 and C_2, depending only on p, such that

$$
C_1 \Gamma_q(X)^{1/q} \leq \sup_f |\alpha(f)| \leq C_2 \Gamma_q(X)^{1/q}
$$

where the sup is taken over functions f in L_p^U, $2 < p < \infty$, with $\int_{\Omega \setminus X} |f(z)|^p \, dm \leq 1$.

We denote the annulus $\{z: 2^{-n-1} \leq |z - x| \leq 2^{-n}\}$ by $A_n(X)$. We write $A_n = A_n(0)$.

Lemma (1.2). Let $X \subset \Omega$ be compact. There is a constant C, depending only on p, such that for $z \notin A_{n-1} \cup A_n \cup A_{n+1}$
for f analytic outside $A_n \setminus X$, $f(\infty) = 0$ and $\int_{\Omega \setminus X} |f(z)|^p \, dm < \infty$.

The following theorem was proved in the sup norm case by Wang [18, p. 223]. Wang essentially followed O'Farrell [13], who elaborated on a method of Gamelin [7, p. 206]. We assume that $x = 0$ and that $0 \in \partial X$.

Theorem (1.1). Let ϕ be an admissible function and s a nonnegative integer. Suppose that there is a function $v \in L^q(X)$ which represents 0 for $R^p(X)$ such that $|z|^{-s} \phi(|z|)^{-1} v \in L^q(X)$. Then

$$\sum_{n=1}^{\infty} 2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X) < \infty.$$

Proof. Suppose that

$$\sum_{n=1}^{\infty} 2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X) = \infty.$$

We will show that this leads to a contradiction. We may assume that for each n

$$2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X) \leq 1.$$

If not, choose Y_n compact, $Y_n \subset A_n$ such that

$$\frac{1}{2} \leq 2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X \cup Y_n) < 1,$$

and set $Y = \bigcup Y_n \cup X$. Then define $v^*(z) = v(z)$ for $z \in X$ and $v^*(z) = 0$ for $z \in Y \setminus X$. Clearly, $|z|^{-s} \phi(|z|)^{-1} v^* \in L^q(Y)$ and v^* represents 0 for $R^p(Y)$.

Now choose integers $M_1 < N_1 < M_2 < N_2 < \cdots$ so that

$$1 \leq \sum_{n=M_j}^{N_j} 2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X) < 2.$$

For each n we choose by Lemma (1.1) compact sets $K_n \subset A_n \setminus X$ and functions $f_n \in L^p_\Omega (\Omega \setminus K_n)$ so that:

(i) $|\alpha(f_n)| \geq C_1 \int_{A_n \setminus X} \left(\int_{\partial K_n} |f_n(z)|^p \, dm \right)^{1/p}$

$$= C_1 \int_{A_n \setminus X} \|f_n\|_{A_n \setminus K_n}^p,$$

where $f_n = 0$ on K_n and

(ii) $\|f_n\|_{A_n \setminus X} = 2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X)^{1/p}$.

Let \(g_j(z) = \phi(|z|)z^{s-j+1}\sum_{n=0}^{N_j} f_n(z) \). We will show that \(\|g_j\|_{X,p} \leq C \) for all \(j \).

In the following discussion \(C \) will denote any constant that is independent of \(n \) and \(j \). Lemma (II.1.2) implies that for \(z \in A_k, k < n - 1 \),
\[
|f_n(z)| < C 2^{q(s+1)n+k}\phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X),
\]
and for \(z \in A_k, k > n + 1 \),
\[
|f_n(z)| < C 2^{q(s+1)n+n+\phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X)}.
\]

We may assume that \(X \subset \{|z| < 1\} \). Then for \(z \in A_k \cap X, k < n - 1 \),
\[
\phi(|z|)|z|^{s+1}|f_n(z)| < C 2^{q(s+1)n+k}\phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X)
\]

For \(z \in A_k, k > n + 1 \),
\[
\phi(|z|)|z|^{s+1}|f_n(z)| < C 2^{q(s+1)n+n-s+1}\phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X).
\]

Now
\[
\int_X |g_j(z)|^p \, dm = \sum_{k=0}^{\infty} \int_{A_k \cap X} \left| \sum_{n=M_j}^{N_j} \phi(|z|)z^{s-j+1}f_n(z) \right|^p \, dm
\]

\[
< C \sum_{k=0}^{\infty} \int_{A_k \cap X} \left\{ \sum_{n=M_j; n \neq k-1,k,k+1}^{N_j} \phi(|z|)|z|^{s+1}|f_n(z)| + \sum_{n=k-1}^{k+1} \phi(|z|)|z|^{s+1}|f_n(z)| \right\}^p \, dm.
\]

By the above estimates and the choice of \(M_j, N_j \), we have for \(z \in A_k \)
\[
\sum_{n=\max(k+2,M_j)}^{N_j} \phi(|z|)|z|^{s+1}|f_n(z)| < C \sum_{n=M_j}^{N_j} 2^{q(s+1)n+\phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X)} < C.
\]

Similarly,
\[
\sum_{n=M_j}^{N_j} \phi(|z|)|z|^{s+1}|f_n(z)| < C \sum_{n=M_j}^{N_j} 2^{q(s+1)n+\phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X)} < C.
\]

Thus
\[
\sum_{k=0}^{\infty} \int_{A_k \cap X} \left\{ \sum_{n=M_j; n \neq k-1,k,k+1}^{N_j} \phi(|z|)|z|^{s+1}|f_n(z)| \right\}^p \, dm < C.
\]

Next, we estimate
For each k, \[
\int_{A_k \cap X} \left(\phi(|z|)|z|^{s+1}|f_{k-1}(z)| \right)^p \, dm
\]
\[
\leq C \left(\phi(2^{-k+1})^p 2^{-p(k-1)} \|f_{k-1}\|_{X,p}^p \right)
\]
\[
\leq C \phi(2^{-k+1})^{p-\rho q} 2^{(k-1) [1-\rho + \rho q (s+1)]} \Gamma_q(A_{k-1} \setminus X)
\]
\[
\leq C 2^{q(s+1)(k-1)\phi(2^{-k+1})^{-q} \Gamma_q(A_{k-1} \setminus X)}
\]
and similarly for f_k and f_{k+1}. Thus
\[
\sum_{k=0}^{\infty} \int_{A_k \cap X} \left(\phi(|z|)|z|^{s+1}|f_n(z)| \right)^p \, dm
\]
\[
\leq C \sum_{k=M_j}^{N_j} 2^{q(s+1)k\phi(2^{-k})^{-q} \Gamma_q(A_k \setminus X)}
\]
\[
\leq C \text{ by choice of } M_j \text{ and } N_j.
\]
Combining the above estimates, we obtain
\[
\int_X |g_j|^p \, dm \leq C \text{ for all } j.
\]
Next we pass to a subsequence of the $\{g_j\}$ that converges weakly to $g \in L^p(X)$. Denote the subsequence also by $\{g_j\}$. We form $h_j(z) = z\phi(|z|)^{-1} g_j(z)$ and $F_j(z) = z^{-s-1} h_j(z)$, which are analytic in $\mathbb{C} \setminus \Delta(0, 2^{-M_j})$. By the above estimates the functions h_j and F_j are uniformly bounded on compact subsets of $\mathbb{C} \setminus \{0\}$. Hence, there are subsequences that converge uniformly on compact subsets of $\mathbb{C} \setminus \{0\}$ to $h(z) = z\phi(|z|)^{-1} g(z)$ and $F(z) = z^{-s-1} h(z)$ respectively.

We claim that h is a polynomial of degree $s + 1$ with $h(0) = 0$. The above estimates show that there is a number $M > 0$ that bounds the h_j in the following sense: to any $z \in \Delta(0, 1) \setminus \{0\}$ there corresponds an integer J such that for $j > J$ and $|z| > |\xi|, |h_j(\xi)| < M$. This implies that h is bounded near 0, so h is entire and $\lim_{z \to 0} h(z) = 0$. To show that h is a polynomial we consider
\[
\lim_{z \to \infty} z^{-s-1} h(z) = F(\infty) = \lim_{j \to \infty} F_j(\infty).
\]
For all j, $F_j(\infty) = \sum_{n=M_j}^{N_j} f_n(\infty)$ lies in $[C_1/2, 3C_2]$ where C_1 and C_2 are the constants of Lemma (1.1). Therefore, we have that $\lim_{j \to \infty} F_j(\infty) = \beta \in [C_1, 2C_2]$, and
$h(z) = \beta z^{s+1} + \sum_{i=1}^{s} \beta_i z^i$ where β_i is a constant for each i.

Thus

$$g_f = \phi(|z|)z^{-1}h_j \to \phi(|z|)z^{-1}h = \beta \phi(|z|)z^s + \sum_{i=1}^{s} \beta_i \phi(|z|)z^{i-1}$$

weakly and pointwise on each bounded subset of $C \setminus \{0\}$.

This means that if $u \in L^q(X)$, then

$$\int g_j u \, dm \to \int \beta \phi(|z|)z^s u \, dm + \sum_{i=1}^{s} \beta_i \int \phi(|z|)z^{i-1}u \, dm.$$

Wilkin's lemma (Lemma (1.4.1)) and the original hypothesis imply that there is a function $v_j \in L^q(X)$ which is a linear combination of the functions $z^{-j}v$, $0 < j < s$, such that

$$\int f v_j \, dm = \frac{f^{(s)}(0)}{s!}$$

for all $f \in R_q(X)$. Taking $u = \phi(|z|)^{-1}v_j$, we get a contradiction.

The next theorem may be proved in a similar way, and we omit many of the details.

Theorem (1.2). Let ϕ be an admissible function and s a nonnegative integer. Suppose that there is a function $v \in L^q(X)$ representing 0 for $R^p(X)$ such that $|z|^{-s} \phi(|z|)^{-1}v \in L^q(X)$. Then

$$\lim_{r \to 0} r^{-qs-q} \phi(r)^{-q} \Gamma_q(\Delta(0, r) \setminus X) = 0.$$

Proof. Suppose that there is a sequence $r_n \to 0$ and a $b > 0$ such that

$$r_n^{-qs-q} \phi(r_n)^{-q} \Gamma_q(\Delta(0, r_n) \setminus X) > b \quad \text{for all } r_n.$$

We may assume as before that

$$2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X) \leq 1 \quad \text{for all } n.$$

Note that if $2^{-k} > r_n$, and $|2^{-k} - r_n| < 2^{-k-1}$,

$$2^{q(s+1)} \sum_{n=k}^{\infty} 2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X) > b.$$

Thus there is a sequence of integers $M_1 < N_1 < M_2 < N_2 < \cdots$ such that

$$2 > \sum_{n=M_j}^{N_j} 2^{q(s+1)n} \phi(2^{-n})^{-q} \Gamma_q(A_n \setminus X) > 2^{-q(s+1)b}$$

for all j. The proof then proceeds as before.

2. **Density at bounded point evaluations.** We will get an estimate for Γ_q capacity in terms of the measure m. The following lemma is in [4].
Lemma (2.1). Let μ be a measure of total mass 1 (i.e. \(\int d\mu = 1 \)). If \(1 < q < 2 \) and \(p = q/(q - 1) \), then
\[
\int_C \left\{ \int |z|^{-1} d\mu(z) \right\}^p dm \leq C \left\{ \sup_{z \in C} \int |z|^{q-2} d\mu(z) \right\}^{q-1}
\]
where \(C \) is some constant depending only on \(p \).

Lemma (2.2). For each \(q, 1 < q < 2 \), there is a positive constant \(C \) such that
\[
\Gamma_q(X) > C m(X)^{(2-q)/2}
\]
for all compact sets \(X \subset \mathbb{C} \).

Proof. Define \(f = m(X)^{-1} \int_X (z - \xi)^{-1} dm(\xi) \). Then \(f \) is analytic in \(\mathbb{C} \setminus X \) and \(f'(\infty) = 1 \). To estimate \(||f||_{\mathbb{C} \setminus X} \) we apply Lemma (II.2.1) with \(\mu = m(X)^{-1} \chi_X \) where \(\chi_X \) is the characteristic function of \(X \). We get
\[
||f||_{\mathbb{C} \setminus X} < C \left\{ \sup_{z \in C} m(X)^{-1} \int_X |z - \xi|^{q-2} dm(\xi) \right\}^{1/q}
\]
We will use \(C \) to denote any constant depending only on \(p \). Choose \(R > 0 \) so that \(R^2 = m(X) \), and let \(D = \Delta(\xi, R) \). Then since \(r^{q-2} \) is a decreasing function of \(r \),
\[
m(X)^{-1} \int_X |z - \xi|^{q-2} dm(\xi) \leq \pi^{-1} R^{-2} \int_0^{2\pi} \int_0^R r^{q-2} dr d\theta
\]
\[
= \pi^{-1} R^{-2} 2\pi \int_0^R r^{q-1} dr
\]
\[
= 2(q - 1)^{-1} R^{-2} R^q = 2(q - 1)^{-1} R^{q-2}.
\]
Applying the above inequality for \(||f||_{\mathbb{C} \setminus X} \), we have
\[
||f||_{\mathbb{C} \setminus X} < CR^{(q-2)/q}.
\]
Define \(g = f/||f||_{\mathbb{C} \setminus X} \). Then \(g \) is analytic in \(\mathbb{C} \setminus X \) and \(||g||_{\mathbb{C} \setminus X} = 1 \). Moreover,
\[
g'(\infty) = f'(\infty)/||f||_{\mathbb{C} \setminus X} > CR^{(2-q)/q} > C m(X)^{(2-q)/2q}.
\]
By Lemma (II.1.1) we conclude that
\[
\Gamma_q(X) > C m(X)^{(2-q)/2},
\]
and the proof is complete.

Corollary (2.1). Let \(\phi \) be an admissible function and \(s \) a nonnegative integer. Suppose that there is a function \(v \in L^q(X) \) representing 0 for \(R^p(X) \),
functions in $R^p(X)$

$p > 2$, such that $|z|^{-2} \phi(|z|)^{-1} \in L^q(X)$. Then

$$m(\Delta(0, n^{-1}) \setminus X) = o\left(\phi(n^{-1})^{2t}(n^{-1})^{2t(z+1)}\right),$$

where $t = q/(2 - q)$.

Proof. This follows from Theorem (II.1.2) and Lemma (II.2.2).

3. An example. In this section we use Hedberg's capacity theorems to construct a Swiss cheese Y such that $\cap_{p > 2} S^p(Y) = \{0\}$. Let X_0 be the closure of a set having positive measure whose boundary consists of finitely many analytic curves. The first step is to show that for a given $\varepsilon > 0$ and $p > 2$ one can construct a Swiss cheese $X = X_0 \setminus \bigcup_{i=1}^{\infty} D_i$ such that:

1. $\sum_{i=1}^{\infty} r_i^{2-\eta} < \varepsilon$ where r_i is the radius of D_i; and
2. for some $p', p > p' > 2$, $S^{p'}(X) = \emptyset$. For $n = 1, 2, \ldots$ we define X_n inductively by letting $X_n = X_{n-1} \setminus G_n$ where $G_n = \bigcup \{\Delta(i2^{-n}, (e2^{-n})^{3/(2-q)}), \text{ where the summation is taken over all Gaussian integers } t \text{ such that } |t2^{-n}| < 1\}$. Then set $X = \cap_{n=0}^{\infty} X_n$. Since each G_n consists of $< 2^{2n}$ disks

$$\sum_{i=1}^{\infty} r_i^{2-\eta} < \sum_{i=1}^{\infty} 2^{2i}[(e2^{-i})^{3/(2-q)}]^{2-\eta} = \varepsilon.$$

Now choose $q', q < q' < 2$, so that $3(2 - q')/(2 - q) < q'$. Let $x \in X$. We claim that $x \notin S^{p'}(X)$ where $1/p' + 1/q' = 1$. Within any disk centered at x and having radius 2^{-n}, there is a disk in $C \setminus X$ having radius at least $4^{-1}(e2^{-r})^{3/(2-q)}$. Hence

$$\lim_{n \to \infty} 2^{nq'} \Delta(x, 2^{-n}) \setminus X$$

$$> 4^{q'-2} \lim_{n \to \infty} 2^{nq'}(e2^{-n})^{3(2-q')/(2-q)} > 0.$$

Thus by Theorem (II.1.2), $x \notin S^{p'}(X)$, and X is the desired set.

Given $\varepsilon > 0$ and $p > 2$, it is possible by the above construction to remove open disks $D_{j,k}$ of radius $r_{j,k}$ from $A_j(0)$ to obtain a Swiss cheese Y_j such that $\Sigma_{k=1}^{\infty} r_{j,k}^{2-\eta} < \varepsilon$ (where $r_j + 1/q_j = 1$), and $S^p(Y_j) = \emptyset$ for some $p_j, p_j > p' > 2$. Choose the ε_j so that $\Sigma_{j=1}^{\infty} 2^{j\varepsilon_j} < \infty$, and define $Y = \cup_{j=0}^{\infty} Y_j$.

We will use Hedberg's theorem [9] to prove that for any $p > 2, 0 \in S^p(Y)$. Let $p > 2$. There is an integer J such that $p > p_j > 2$ for $j > J$. Hence,

$$\sum_{j=J}^{\infty} 2^{j\varepsilon_j} \Gamma_q(A_j(0) \setminus X) < C \sum_{j=J}^{\infty} 2^{j\varepsilon_j} \sum_{k=1}^{\infty} r_{j,k}^{2-\eta} < C \sum_{j=J}^{\infty} 2^{j\varepsilon_j} < \infty.$$

By Hedberg's theorem $0 \in S^p(Y)$, and since $p > 2$ was arbitrary, $0 \in \cap_{p > 2} S^p(Y)$. That 0 is the only point in $\cap_{p > 2} S^p(Y)$ follows from the construction of Y and the fact that $x \in S^p(Y)$ if and only if $x \in S^p(Y \cap \overline{\Delta(x,r)})$ for any $r > 0$.

Given any compact set X it would be interesting to find necessary and sufficient conditions for $\cap_{p > 2} S^p(X)$ to have positive measure. Lemma (I.2.3)
implies that a sufficient condition is that there exist a single g which represents 0 for $R^p(X)$ for all $p > 2$.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912

Current address: Mathematics Department, East Carolina University, Greenville, North Carolina 27834