Bounded point evaluations and smoothness properties of functions in $R^{p}(X)$
HTML articles powered by AMS MathViewer
- by Edwin Wolf
- Trans. Amer. Math. Soc. 238 (1978), 71-88
- DOI: https://doi.org/10.1090/S0002-9947-1978-0470679-X
- PDF | Request permission
Abstract:
Let X be a compact subset of the complex plane C. We denote by ${R_0}(X)$ the algebra consisting of the (restrictions to X of) rational functions with poles off X. Let m denote 2-dimensional Lebesgue measure. For $p \geqslant 1$, let ${L^p}(X) = {L^p}(X,dm)$. The closure of ${R_0}(X)$ in ${L^p}(X)$ will be denoted by ${R^p}(X)$. Whenever p and q both appear, we assume that $1/p + 1/q = 1$. If x is a point in X which admits a bounded point evaluation on ${R^p}(X)$, then the map which sends f to $f(x)$ for all $f \in {R_0}(X)$ extends to a continuous linear functional on ${R^p}(X)$. The value of this linear functional at any $f \in {R^p}(X)$ is denoted by $f(x)$. We examine the smoothness properties of functions in ${R^p}(X)$ at those points which admit bounded point evaluations. For $p > 2$ we prove in Part I a theorem that generalizes the “approximate Taylor theorem” that James Wang proved for $R(X)$. In Part II we generalize a theorem of Hedberg about the convergence of a certain capacity series at a point which admits a bounded point evaluation. Using this result, we study the density of the set X at such a point.References
- J. Brennan, Point evaluations and invariant subspaces, Doctoral Dissertation, Brown Univ., Providence, R.I., 1968.
- James E. Brennan, Invariant subspaces and rational approximation, J. Functional Analysis 7 (1971), 285–310. MR 0423059, DOI 10.1016/0022-1236(71)90036-x
- Andrew Browder, Introduction to function algebras, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0246125
- Jacques Deny, Sur la convergence de certaines intégrales de la théorie du potentiel, Arch. Math. (Basel) 5 (1954), 367–370 (French). MR 66513, DOI 10.1007/BF01898378
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- W. H. J. Fuchs, Topics in the theory of functions of one complex variable, Van Nostrand Mathematical Studies, No. 12, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. Manuscript prepared with the collaboration of Alan Schumitsky. MR 0220902
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Lars Inge Hedberg, Approximation in the mean by analytic functions, Trans. Amer. Math. Soc. 163 (1972), 157–171. MR 432886, DOI 10.1090/S0002-9947-1972-0432886-6
- Lars Inge Hedberg, Bounded point evaluations and capacity, J. Functional Analysis 10 (1972), 269–280. MR 0352493, DOI 10.1016/0022-1236(72)90026-2 L. H. Helms, Introduction to potential theory, Interscience, New York, 1969. MR 41 #5638.
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Anthony G. O’Farrell, Analytic capacity, Hölder conditions and $\tau$-spikes, Trans. Amer. Math. Soc. 196 (1974), 415–424. MR 361116, DOI 10.1090/S0002-9947-1974-0361116-0
- Anthony G. O’Farrell, An isolated bounded point derivation, Proc. Amer. Math. Soc. 39 (1973), 559–562. MR 315452, DOI 10.1090/S0002-9939-1973-0315452-9
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- S. O. Sinanjan, Approximation by analytical functions and polynomials in the mean with respect to the area, Mat. Sb. (N.S.) 69 (111) (1966), 546–578 (Russian). MR 0209491
- James Li Ming Wang, An approximate Taylor’s theorem for $R(X)$, Math. Scand. 33 (1973), 343–358 (1974). MR 348124, DOI 10.7146/math.scand.a-11496
- James Li Ming Wang, Modulus of approximate continuity for $R(X)$, Math. Scand. 34 (1974), 219–225. MR 355079, DOI 10.7146/math.scand.a-11522
- John Wermer, Potential theory, Lecture Notes in Mathematics, Vol. 408, Springer-Verlag, Berlin-New York, 1974. MR 0454033, DOI 10.1007/978-3-662-12727-8
- Donald R. Wilken, Bounded point derivations and representing measures on $R(X)$, Proc. Amer. Math. Soc. 24 (1970), 371–373. MR 248529, DOI 10.1090/S0002-9939-1970-0248529-4
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 238 (1978), 71-88
- MSC: Primary 46E99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0470679-X
- MathSciNet review: 0470679