Analytic left algebraic groups. II
HTML articles powered by AMS MathViewer
- by Andy R. Magid
- Trans. Amer. Math. Soc. 238 (1978), 165-177
- DOI: https://doi.org/10.1090/S0002-9947-1978-0473033-X
- PDF | Request permission
Abstract:
An analytic left algebraic group is a complex analytic group carrying a structure of affine algebraic variety such that left translations by fixed elements are morphisms. The core of such a group is the (algebraic) subgroup of all elements such that right translation by them is a morphism. It is shown that the core determines the left algebraic structure, and this is used to determine when left algebraic structures are conjugate by inner automorphisms.References
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042 A. Grothendieck, La torsion homologique et les sections rationnelles, Séminaire C. Chevalley, 2e année: 1958. Anneaux de Chow et Applications, Exposé 5, Secrétariat mathématique, Paris, 1958. MR 22 #1572.
- G. Hochschild and G. D. Mostow, On the algebra of representative functions of an analytic group, Amer. J. Math. 83 (1961), 111–136. MR 141732, DOI 10.2307/2372724
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Andy R. Magid, Left algebraic groups, J. Algebra 35 (1975), 253–272. MR 437548, DOI 10.1016/0021-8693(75)90050-2
- Andy R. Magid, Analytic left algebraic groups, Amer. J. Math. 99 (1977), no. 5, 1045–1059. MR 447262, DOI 10.2307/2373999
- Maxwell Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc. 101 (1961), 211–223. MR 130878, DOI 10.1090/S0002-9947-1961-0130878-0
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 238 (1978), 165-177
- MSC: Primary 20G20; Secondary 17B45, 22E10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0473033-X
- MathSciNet review: 0473033