Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors
HTML articles powered by AMS MathViewer
- by R. Cushman
- Trans. Amer. Math. Soc. 238 (1978), 45-55
- DOI: https://doi.org/10.1090/S0002-9947-1978-0478223-8
- PDF | Request permission
Abstract:
Any analytic symplectic diffeomorphism $\Phi$ of a symplectic manifold M is the Poincaré map of a real analytic Hamiltonian vector field ${X_H}$. If $\Phi$ does not have an analytic integral, then ${X_H}$ has no analytic integral which is not a power series in H. Let $M = {{\mathbf {R}}^2}$. If $\Phi$ has a finite contact homoclinic point, then $\Phi$ is nonintegrable. Also Moser’s polynomial mapping is nonintegrable.References
- V. I. Arnol′d and A. Avez, Ergodic problems of classical mechanics, W. A. Benjamin, Inc., New York-Amsterdam, 1968. Translated from the French by A. Avez. MR 0232910 R. Abraham with J. Marsden, Foundations of mechanics, Benjamin, New York, 1967. MR 36 #3527.
- Richard B. Barrar, Isolated fixed points in celestial mechanics, J. Math. Anal. Appl. 36 (1971), 506–517. MR 289862, DOI 10.1016/0022-247X(71)90034-5 R. Cushman, Analytic integrable area preserving diffeomorphisms of the closed 2-disc, Thesis, Princeton Univ., 1970. S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, Interscience, New York, 1970.
- Jürgen Moser, Nonexistence of integrals for canonical systems of differential equations, Comm. Pure Appl. Math. 8 (1955), 409–436. MR 79171, DOI 10.1002/cpa.3160080308
- Jürgen Moser, Stable and random motions in dynamical systems, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR 0442980
- Jürgen K. Moser, Lectures on Hamiltonian systems, Mem. Amer. Math. Soc. 81 (1968), 60. MR 0230498
- Jürgen Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math. 9 (1956), 673–692. MR 86981, DOI 10.1002/cpa.3160090404
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Carl Ludwig Siegel, On the integrals of canonical systems, Ann. of Math. (2) 42 (1941), 806–822. MR 5818, DOI 10.2307/1969262
- Carl Ludwig Siegel and Jürgen K. Moser, Lectures on celestial mechanics, Die Grundlehren der mathematischen Wissenschaften, Band 187, Springer-Verlag, New York-Heidelberg, 1971. Translation by Charles I. Kalme. MR 0502448, DOI 10.1007/978-3-642-87284-6
- E. Zehnder, Homoclinic points near elliptic fixed points, Comm. Pure Appl. Math. 26 (1973), 131–182. MR 345134, DOI 10.1002/cpa.3160260204
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 238 (1978), 45-55
- MSC: Primary 58F05; Secondary 70.58
- DOI: https://doi.org/10.1090/S0002-9947-1978-0478223-8
- MathSciNet review: 0478223