Periodic solutions for a differential equation in Banach space
HTML articles powered by AMS MathViewer
- by James H. Lightbourne
- Trans. Amer. Math. Soc. 238 (1978), 285-299
- DOI: https://doi.org/10.1090/S0002-9947-1978-0481337-X
- PDF | Request permission
Abstract:
Suppose X is a Banach space, $\Omega \subset X$ is closed and convex, and $A:[0,\infty ) \times \Omega \to X$ is continuous. Then if \[ \lim \limits _{h \to 0} |x + hA(t,x);\Omega |/h = 0\quad {\text {for}}\;{\text {all}}\;(t,x) \in [0,\infty ) \times \Omega ,\] there exist approximate solutions to the initial value problem \begin{equation}\tag {$IVP$}u’(t) = A(t,u(t)),\quad u(0) = x \in \Omega .\end{equation} In the case that $A(t,x) = B(t,x) + C(t,x)$, where B satisfies a dissipative condition and C is compact, we obtain a growth estimate on the measure of noncompactness of trajectories for a class of approximate solutions. This estimate is employed to obtain existence of periodic solutions to (IVP).References
- A. Cellina, On the local existence of solutions of ordinary differential equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 293–296 (English, with Russian summary). MR 315237
- M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57–94. MR 300166, DOI 10.1007/BF02761448
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book, The Macmillan Company, New York, 1964. Translated by A. H. Armstrong; translation edited by J. Burlak. MR 0159197 —, Translation along trajectories of differential equations, Transl. Math. Monographs, Vol. 29, Amer. Math. Soc., Providence, R. I., 1968.
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 V. Lakshmikantham and S. Leela, Differential and integral inequalities, Vol. I, Academic Press, New York, 1969.
- A. Lasota and James A. Yorke, The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1–12. MR 335994, DOI 10.1016/0022-0396(73)90027-2
- T. Y. Li, Existence of solutions for ordinary differential equations in Banach spaces, J. Differential Equations 18 (1975), 29–40. MR 369848, DOI 10.1016/0022-0396(75)90079-0
- R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399–414. MR 318991, DOI 10.1090/S0002-9947-1973-0318991-4
- Robert H. Martin Jr., Approximation and existence of solutions to ordinary differential equations in Banach spaces, Funkcial. Ekvac. 16 (1973), 195–211. MR 352641
- R. H. Martin Jr., Remarks on ordinary differential equations involving dissipative and compact operators, J. London Math. Soc. (2) 10 (1975), 61–65. MR 369849, DOI 10.1112/jlms/s2-10.1.61
- Robert H. Martin Jr., Invariant sets for perturbed semigroups of linear operators, Ann. Mat. Pura Appl. (4) 105 (1975), 221–239. MR 390414, DOI 10.1007/BF02414931
- B. N. Sadovskiĭ, On a fixed point principle, Funkcional. Anal. i Priložen. 1 (1967), no. 2, 74–76 (Russian). MR 0211302
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 238 (1978), 285-299
- MSC: Primary 34G05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0481337-X
- MathSciNet review: 0481337