A Hopf global bifurcation theorem for retarded functional differential equations
HTML articles powered by AMS MathViewer
- by Roger D. Nussbaum
- Trans. Amer. Math. Soc. 238 (1978), 139-164
- DOI: https://doi.org/10.1090/S0002-9947-1978-0482913-0
- PDF | Request permission
Abstract:
We prove a result concerning the global nature of the set of periodic solutions of certain retarded functional differential equations. Our main theorem is an analogue, for retarded F.D.E.’s, of a result by J. Alexander and J. Yorke for ordinary differential equations.References
- J. C. Alexander and James A. Yorke, Global bifurcations of periodic orbits, Amer. J. Math. 100 (1978), no. 2, 263–292. MR 474406, DOI 10.2307/2373851
- Karol Borsuk, Theory of retracts, Monografie Matematyczne, Tom 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473
- Shui Nee Chow and John Mallet-Paret, The Fuller index and global Hopf bifurcation, J. Differential Equations 29 (1978), no. 1, 66–85. MR 492560, DOI 10.1016/0022-0396(78)90041-4
- Kenneth L. Cooke and James A. Yorke, Some equations modelling growth processes and gonorrhea epidemics, Math. Biosci. 16 (1973), 75–101. MR 312923, DOI 10.1016/0025-5564(73)90046-1
- J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 44116, DOI 10.2140/pjm.1951.1.353
- F. Brock Fuller, An index of fixed point type for periodic orbits, Amer. J. Math. 89 (1967), 133–148. MR 209600, DOI 10.2307/2373103
- R. B. Grafton, A periodicity theorem for autonomous functional differential equations, J. Differential Equations 6 (1969), 87–109. MR 243176, DOI 10.1016/0022-0396(69)90119-3
- R. B. Grafton, Periodic solutions of certain Liénard equations with delay, J. Differential Equations 11 (1972), 519–527. MR 293207, DOI 10.1016/0022-0396(72)90064-2
- A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces. I, Rozprawy Mat. 30 (1962), 93. MR 149253
- Jack K. Hale, Functional differential equations, Applied Mathematical Sciences, Vol. 3, Springer-Verlag New York, New York-Heidelberg, 1971. MR 0466837, DOI 10.1007/978-1-4615-9968-5
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Jorge Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc. 7 (1976), no. 174, viii+128. MR 425696, DOI 10.1090/memo/0174 —, Global bifurcation of periodic orbits, Communicaciones Tecnicas of C.I.M.A.S., Vol. 5, Series B., No. 8 (1974). (Spanish)
- G. Stephen Jones, The existence of periodic solutions of $f^{\prime } (x)=-\alpha f(x-1)\{1+f(x)\}$, J. Math. Anal. Appl. 5 (1962), 435–450. MR 141837, DOI 10.1016/0022-247X(62)90017-3
- G. Stephen Jones, Periodic motions in Banach space and applications to functional-differential equations, Contributions to Differential Equations 3 (1964), 75–106. MR 163039
- James L. Kaplan and James A. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl. 48 (1974), 317–324. MR 364815, DOI 10.1016/0022-247X(74)90162-0
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- John Mallet-Paret, Generic periodic solutions of functional differential equations, J. Differential Equations 25 (1977), no. 2, 163–183. MR 442995, DOI 10.1016/0022-0396(77)90198-x R. May, Stability and complexity in model ecosystems, Princeton Univ. Press, Princeton, N.J., 1973.
- L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Mathematical Sciences, New York University, New York, 1974. With a chapter by E. Zehnder; Notes by R. A. Artino; Lecture Notes, 1973–1974. MR 0488102
- Roger D. Nussbaum, A global bifurcation theorem with applications to functional differential equations, J. Functional Analysis 19 (1975), no. 4, 319–338. MR 0385656, DOI 10.1016/0022-1236(75)90061-0
- Roger D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations. II, J. Differential Equations 14 (1973), 360–394. MR 372370, DOI 10.1016/0022-0396(73)90053-3
- Roger D. Nussbaum, Global bifurcation of periodic solutions of some autonomous functional differential equations, J. Math. Anal. Appl. 55 (1976), no. 3, 699–725. MR 430473, DOI 10.1016/0022-247X(76)90076-7
- Roger D. Nussbaum, The range of periods of periodic solutions of $x’(t)=-\alpha f(x(t-1))$, J. Math. Anal. Appl. 58 (1977), no. 2, 280–292. MR 445086, DOI 10.1016/0022-247X(77)90206-2 —, Periodic solutions of differential-delay equations with two time lags (submitted).
- W. V. Petryshyn, On the approximation-solvability of equations involving $A$-proper and psuedo-$A$-proper mappings, Bull. Amer. Math. Soc. 81 (1975), 223–312. MR 388173, DOI 10.1090/S0002-9904-1975-13728-1
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- Gordon Thomas Whyburn, Topological analysis, Princeton Mathematical Series, No. 23, Princeton University Press, Princeton, N. J., 1958. MR 0099642
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 238 (1978), 139-164
- MSC: Primary 34K15; Secondary 47H15, 58F14
- DOI: https://doi.org/10.1090/S0002-9947-1978-0482913-0
- MathSciNet review: 482913