Central twisted group algebras
HTML articles powered by AMS MathViewer
- by Harvey A. Smith
- Trans. Amer. Math. Soc. 238 (1978), 309-320
- DOI: https://doi.org/10.1090/S0002-9947-1978-0487460-8
- PDF | Request permission
Abstract:
A twisted group algebra ${L^1}(A,G;T,\alpha )$ is central iff T is trivial and A commutative. (Group algebras of central extension of G are such.) We show that if ${H^2}(G)$ is discrete any central ${L^1}(A,G;\alpha )$ is a direct sum of closed ideals ${L^1}({A_i},G;{\alpha _i})$ having as duals fibre bundles over the duals of closed ideals ${A_i}$ in A, with fibres projective duals of G, and principal ${G^\wedge }$ bundles (where ${G^\wedge }$ denotes the group of characters of G) satisfying the conditions which define characteristic bundles for G abelian. (If G is compact ${H^2}(G)$ is always discrete, the direct sum is countable, and the bundles are locally trivial.) Applications are made to the duals of central extensions of groups and in particular to duals of “central” groups. For G commutative, ${H^2}(G)$ discrete, and A a ${C^\ast }$-algebra with identity, all central twisted group algebras ${L^1}(A,G;\alpha )$ (and their duals) are classified in purely algebraic terms involving ${H^2}(G)$, the group G, and the first Čech cohomology group of the dual of A. This result allows us, in principle, to construct all the central ${L^1}(A,G;\alpha )$ and their duals where A is a ${C^\ast }$-algebra with identity and G a compact commutative group.References
- Otha L. Britton, Primitive ideals of twisted group algebras, Trans. Amer. Math. Soc. 202 (1975), 221–241. MR 374815, DOI 10.1090/S0002-9947-1975-0374815-2
- Lawrence G. Brown, Locally compact abelian groups with trivial multiplier group, J. Functional Analysis 7 (1971), 132–139. MR 0433143, DOI 10.1016/0022-1236(71)90048-6
- Lawrence G. Brown, Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593–600. MR 308321, DOI 10.1090/S0002-9939-1972-0308321-0
- Robert C. Busby, On the equivalence of twisted group algebras and Banach $^{\ast }$-algebraic bundles, Proc. Amer. Math. Soc. 37 (1973), 142–148. MR 315469, DOI 10.1090/S0002-9939-1973-0315469-4
- Robert C. Busby, Centralizers of twisted group algebras, Pacific J. Math. 47 (1973), 357–392. MR 333595, DOI 10.2140/pjm.1973.47.357
- Robert C. Busby and Harvey A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503–537. MR 264418, DOI 10.1090/S0002-9947-1970-0264418-8
- Robert C. Busby, Irwin Schochetman, and Harvey A. Smith, Integral operators and the compactness of induced representations, Trans. Amer. Math. Soc. 164 (1972), 461–477. MR 295099, DOI 10.1090/S0002-9947-1972-0295099-7
- Donal P. O’Donovan, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc. 208 (1975), 1–25. MR 385632, DOI 10.1090/S0002-9947-1975-0385632-1
- Sergio Doplicher, Daniel Kastler, and Derek W. Robinson, Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys. 3 (1966), 1–28. MR 205095, DOI 10.1007/BF01645459
- John Ernest, The enveloping algebra of a covariant system, Comm. Math. Phys. 17 (1970), 61–74. MR 275800, DOI 10.1007/BF01649584
- J. M. G. Fell, An extension of Mackey’s method to Banach $^{\ast }$ algebraic bundles, Memoirs of the American Mathematical Society, No. 90, American Mathematical Society, Providence, R.I., 1969. MR 0259619
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317–340. MR 209394, DOI 10.1090/S0002-9947-1967-0209394-9
- Siegfried Grosser and Martin Moskowitz, Representation theory of central topological groups, Trans. Amer. Math. Soc. 129 (1967), 361–390. MR 229753, DOI 10.1090/S0002-9947-1967-0229753-8
- Siegfried Grosser and Martin Moskowitz, Harmonic analysis on central topological groups, Trans. Amer. Math. Soc. 156 (1971), 419–454. MR 276418, DOI 10.1090/S0002-9947-1971-0276418-3
- Siegfried Grosser, Richard Mosak, and Martin Moskowitz, Duality and harmonic analysis on central topological groups. I, Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 65–77. MR 0340470, DOI 10.1016/1385-7258(73)90039-5
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247, DOI 10.1007/978-1-4757-4008-0
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578, DOI 10.1007/978-3-662-41914-4 M. Landstadt, Duality theory for covariant systems, Dissertation, University of Pennsylvania, 1974.
- Michael Leinert, Fell-Bündel und verallgemeinerte $L^{1}$-Algebren, J. Functional Analysis 22 (1976), no. 4, 323–345. MR 0419676, DOI 10.1016/0022-1236(76)90001-x
- Calvin C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40–63; ibid. 113 (1964), 64–86. MR 171880, DOI 10.1090/S0002-9947-1964-0171880-5
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), no. 1, 35–58. MR 414776, DOI 10.1090/S0002-9947-1976-0414776-1
- M. A. Naĭmark, Normed rings, Reprinting of the revised English edition, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the first Russian edition by Leo F. Boron. MR 0355601
- Harvey A. Smith, Positive functionals and representations of tensor products of symmetric Banach algebras, Canadian J. Math. 20 (1968), 1192–1202. MR 231207, DOI 10.4153/CJM-1968-113-7
- Harvey A. Smith, Commutative twisted group algebras, Trans. Amer. Math. Soc. 197 (1974), 315–326. MR 364538, DOI 10.1090/S0002-9947-1974-0364538-7
- Harvey A. Smith, Characteristic principal bundles, Trans. Amer. Math. Soc. 211 (1975), 365–375. MR 376953, DOI 10.1090/S0002-9947-1975-0376953-7
- V. S. Varadarajan, Geometry of quantum theory. Vol. I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. MR 0471674
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 238 (1978), 309-320
- MSC: Primary 46H99; Secondary 22D20, 46L99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0487460-8
- MathSciNet review: 0487460