Mesures invariantes sur les hypergroupes
HTML articles powered by AMS MathViewer
- by R. Spector
- Trans. Amer. Math. Soc. 239 (1978), 147-165
- DOI: https://doi.org/10.1090/S0002-9947-1978-0463806-1
- PDF | Request permission
Abstract:
The notion of an invariant or relatively invariant measure on a hypergroup is studied. The main result is that every commutative hypergroup carries an invariant measure.References
- Charles F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331–348. MR 320635, DOI 10.1090/S0002-9947-1973-0320635-2
- Robert I. Jewett, Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), no. 1, 1–101. MR 394034, DOI 10.1016/0001-8708(75)90002-X K. A. Ross, Hypergroups and centers of measure algebras, A paraître dans Symposia Mathematica, Istituto Nazionale di alta Matematica.
- René Spector, Théorie axiomatique des hypergroupes, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), no. 25, Aii, A1743–A1744 (French, with English summary). MR 390647 —, Aperçu de la théorie des hypergroupes. Analyse Harmonique sur les Groupes de Lie, Séminaire Nancy-Strasbourg 1973-1975, Lecture Notes in Math. vol. 497, Springer-Verlag, Berlin and New York. 1975. A. Weil, L’intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940. MR 3, 198.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 239 (1978), 147-165
- MSC: Primary 43A05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0463806-1
- MathSciNet review: 0463806