Complete universal locally finite groups
HTML articles powered by AMS MathViewer
- by Ken Hickin PDF
- Trans. Amer. Math. Soc. 239 (1978), 213-227 Request permission
Abstract:
This paper will partly strengthen a recent application of model theory to the construction of sets of pairwise nonembeddable universal locally finite groups [8]. Our result is Theorem. There is a set $\mathcal {U}$ of ${2^{{\aleph _1}}}$ universal locally finite groups of order ${\aleph _1}$ with the following properties: 0.1. If $U \ne V \in \mathcal {U}$ and A and B are uncountable sugroups of U and V, then A and B are not isomorphic. Let A be an uncountable subgroup of $U \in \mathcal {U}$. 0.2. A does not belong to any proper variety of groups, and 0.3. A is not isomorphic to any of its proper subgroups. 0.4. Every $U \in \mathcal {U}$ is a complete group (every automorphism of U is inner).References
- Gilbert Baumslag, Lecture notes on nilpotent groups, Regional Conference Series in Mathematics, No. 2, American Mathematical Society, Providence, R.I., 1971. MR 0283082
- G. Fodor, On stationary sets and regressive functions, Acta Sci. Math. (Szeged) 27 (1966), 105–110. MR 200167
- P. Hall, Some constructions for locally finite groups, J. London Math. Soc. 34 (1959), 305–319. MR 162845, DOI 10.1112/jlms/s1-34.3.305
- Kenneth K. Hickin, Countable type local theorems in algebra, J. Algebra 27 (1973), 523–537. MR 340424, DOI 10.1016/0021-8693(73)90062-8
- B. Jónsson, Homogeneous universal relational systems, Math. Scand. 8 (1960), 137–142. MR 125021, DOI 10.7146/math.scand.a-10601
- Otto H. Kegel and Bertram A. F. Wehrfritz, Locally finite groups, North-Holland Mathematical Library, Vol. 3, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0470081
- A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227–255. MR 260879, DOI 10.1090/S0002-9947-1970-0260879-9
- Angus Macintyre and Saharon Shelah, Uncountable universal locally finite groups, J. Algebra 43 (1976), no. 1, 168–175. MR 439625, DOI 10.1016/0021-8693(76)90150-2 A. Macintyre, Existentially closed structures and Gentzen’s principle (to appear).
- Michael Morley and Robert Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37–57. MR 150032, DOI 10.7146/math.scand.a-10648
- B. H. Neumann, Permutational products of groups, J. Austral. Math. Soc. 1 (1959/1960), 299–310. MR 0123597, DOI 10.1017/S1446788700025970
- B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. MR 62741, DOI 10.1098/rsta.1954.0007
- W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0167513 W. Sierpiński, Cardinal and ordinal numbers, 2nd rev. ed., Monografie Mat., vol., 34, PWN, Warsaw, 1965. MR 33 #2549.
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 239 (1978), 213-227
- MSC: Primary 20E25; Secondary 20F50
- DOI: https://doi.org/10.1090/S0002-9947-1978-0480750-4
- MathSciNet review: 0480750