The commutant of an analytic Toeplitz operator

Author:
Carl C. Cowen

Journal:
Trans. Amer. Math. Soc. **239** (1978), 1-31

MSC:
Primary 47B35; Secondary 30A78

DOI:
https://doi.org/10.1090/S0002-9947-1978-0482347-9

MathSciNet review:
0482347

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a function *f* in of the unit disk, the operator on of multiplication by *f* will be denoted by and its commutant by . For a finite Blaschke product *B*, a representation of an operator in as a function on the Riemann surface of motivates work on more general functions. A theorem is proved which gives conditions on a family of functions which imply that there is a function *h* such that . As a special case of this theorem, we find that if the inner factor of is a finite Blaschke product for some *c* in the disk, then there is a finite Blaschke product *B* with . Necessary and sufficient conditions are given for an operator to commute with when *f* is a covering map (in the sense of Riemann surfaces). If *f* and *g* are in and , then . This paper introduces a class of functions, the -ancestral functions, for which the converse is true. If *f* and *g* are -ancestral functions, then unless where *h* is univalent. It is shown that inner functions and covering maps are -ancestral functions, although these do not exhaust the class. Two theorems are proved, each giving conditions on a function *f* which imply that does not commute with nonzero compact operators. It follows from one of these results that if *f* is an -ancestral function, then does not commute with any nonzero compact operators.

**[1]**M. B. Abrahamse,*Analytic Toeplitz operators with automorphic symbol*, Proc. Amer. Math. Soc.**52**(1975), 297–302. MR**0405156**, https://doi.org/10.1090/S0002-9939-1975-0405156-8**[2]**M. B. Abrahamse and Joseph A. Ball,*Analytic Toeplitz operators with automorphic symbol. II*, Proc. Amer. Math. Soc.**59**(1976), no. 2, 323–328. MR**0454714**, https://doi.org/10.1090/S0002-9939-1976-0454714-4**[3]**I. N. Baker, James A. Deddens, and J. L. Ullman,*A theorem on entire functions with applications to Toeplitz operators*, Duke Math. J.**41**(1974), 739–745. MR**0355046****[4]**James A. Deddens and Tin Kin Wong,*The commutant of analytic Toeplitz operators*, Trans. Amer. Math. Soc.**184**(1973), 261–273. MR**0324467**, https://doi.org/10.1090/S0002-9947-1973-0324467-0**[5]**Kenneth Hoffman,*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR**0133008****[6]**Eric A. Nordgren,*Composition operators*, Canad. J. Math.**20**(1968), 442–449. MR**0223914**, https://doi.org/10.4153/CJM-1968-040-4**[7]**Carl Pearcy and Allen L. Shields,*A survey of the Lomonosov technique in the theory of invariant subspaces*, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 219–229. Math. Surveys, No. 13. MR**0355639****[8]**Walter Rudin,*A generalization of a theorem of Frostman*, Math. Scand**21**(1967), 136–143 (1968). MR**0235151**, https://doi.org/10.7146/math.scand.a-10853**[9]**John V. Ryff,*Subordinate 𝐻^{𝑝} functions*, Duke Math. J.**33**(1966), 347–354. MR**0192062****[10]**H. S. Shapiro and A. L. Shields,*On some interpolation problems for analytic functions*, Amer. J. Math.**83**(1961), 513–532. MR**0133446**, https://doi.org/10.2307/2372892**[11]**A. L. Shields and L. J. Wallen,*The commutants of certain Hilbert space operators*, Indiana Univ. Math. J.**20**(1970/1971), 777–788. MR**0287352**, https://doi.org/10.1512/iumj.1971.20.20062**[12]**James E. Thomson,*Intersections of commutants of analytic Toeplitz operators*, Proc. Amer. Math. Soc.**52**(1975), 305–310. MR**0399927**, https://doi.org/10.1090/S0002-9939-1975-0399927-4**[13]**James E. Thomson,*The commutants of certain analytic Toeplitz operators*, Proc. Amer. Math. Soc.**54**(1976), 165–169. MR**0388156**, https://doi.org/10.1090/S0002-9939-1976-0388156-7**[14]**James E. Thomson,*The commutant of a class of analytic Toeplitz operators*, Amer. J. Math.**99**(1977), no. 3, 522–529. MR**0461196**, https://doi.org/10.2307/2373929**[15]**James Thomson,*The commutant of a class of analytic Toeplitz operators. II*, Indiana Univ. Math. J.**25**(1976), no. 8, 793–800. MR**0417843**, https://doi.org/10.1512/iumj.1976.25.25063**[16]**William A. Veech,*A second course in complex analysis*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0220903****[17]**E. L. Stout,*Bounded holomorphic functions on finite Reimann surfaces*, Trans. Amer. Math. Soc.**120**(1965), 255–285. MR**0183882**, https://doi.org/10.1090/S0002-9947-1965-0183882-4

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47B35,
30A78

Retrieve articles in all journals with MSC: 47B35, 30A78

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1978-0482347-9

Keywords:
Toeplitz operator,
commutant,
,
analytic function,
inner function,
universal covering map

Article copyright:
© Copyright 1978
American Mathematical Society