Asymptotic formulas for Toeplitz determinants
HTML articles powered by AMS MathViewer
 by Estelle Basor PDF
 Trans. Amer. Math. Soc. 239 (1978), 3365 Request permission
Abstract:
The object of this paper is to find an asymptotic formula for determinants of finite dimensional Toeplitz operators generated by a class of functions with singularities. The formula is a generalization of the Strong Szegö Limit Theorem.References

E. W. Barnes, The theory of the Gfunction, Quart. J. Pure Appl. Math. 31 (1900), 264313.
H. Bateman, Higher transcendental functions, Vol. 1, Bateman Manuscript Project (A. Erdélyi, Editor), McGrawHill, New York, 1953. MR 15, 419.
 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. I, McGrawHill Book Co., Inc., New YorkTorontoLondon, 1954. Based, in part, on notes left by Harry Bateman. MR 0061695
 Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
 Herbert Buchholz, The confluent hypergeometric function with special emphasis on its applications, Springer Tracts in Natural Philosophy, Vol. 15, SpringerVerlag New York, Inc., New York, 1969. Translated from the German by H. Lichtblau and K. Wetzel. MR 0240343, DOI 10.1007/9783642883965 M. E. Fisher and R. E. Hartwig, Toeplitz determinants. Some applications, theorems and conjectures, Adv. Chem. Phys. 15 (1968), 333353. I. C. Gohberg and M. G. Kreǐn, Introduction to the theory of linear nonselfadjoint operators in Hilbert space; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1968. MR 39 #7447.
 Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, BerkeleyLos Angeles, 1958. MR 0094840
 I. I. Hirschman Jr., On a formula of Kac and Achiezer, J. Math. Mech. 16 (1966), 167–196. MR 0208279, DOI 10.1512/iumj.1967.16.16012
 I. I. Hirschman Jr., On a theorem of Szegö, Kac, and Baxter, J. Analyse Math. 14 (1965), 225–234. MR 177250, DOI 10.1007/BF02806390
 I. I. Hirschman Jr., Recent developments in the theory of finite Toeplitz operators, Advances in probability and related topics, Vol. 1, Dekker, New York, 1971, pp. 103–167. MR 0305130
 A. Lenard, Some remarks on large Toeplitz determinants, Pacific J. Math. 42 (1972), 137–145. MR 331106, DOI 10.2140/pjm.1972.42.137 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, rev. ed., Providence, R. I., 1959. MR 21 #5029.
 E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
 Harold Widom, Asymptotic behavior of block Toeplitz matrices and determinants, Advances in Math. 13 (1974), 284–322. MR 409511, DOI 10.1016/00018708(74)900723
 Harold Widom, Toeplitz determinants with singular generating functions, Amer. J. Math. 95 (1973), 333–383. MR 331107, DOI 10.2307/2373789
Additional Information
 © Copyright 1978 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 239 (1978), 3365
 MSC: Primary 47B35; Secondary 42A56
 DOI: https://doi.org/10.1090/S0002994719780493480X
 MathSciNet review: 0493480