## The existence of combinatorial formulae for characteristic classes

HTML articles powered by AMS MathViewer

- by Norman Levitt and Colin Rourke PDF
- Trans. Amer. Math. Soc.
**239**(1978), 391-397 Request permission

## Abstract:

Given a characteristic class on a locally ordered combinatorial manifold*M*there exists a cocycle which represents the class on

*M*and is

*locally defined*, i.e. its value on $\sigma \in M$ depends only on the ordered star ${\text {st}}(\sigma ,M)$. For rational classes the dependence on order disappears. There is also a locally defined cycle which carries the dual homology class.

## References

- J. C. Cantrell and C. H. Edwards Jr. (eds.),
*Topology of manifolds*, Markham Publishing Co., Chicago, Ill., 1970. MR**0268896** - Stephen Halperin and Domingo Toledo,
*Stiefel-Whitney homology classes*, Ann. of Math. (2)**96**(1972), 511–525. MR**312515**, DOI 10.2307/1970823
R. MacPherson, Sem. Bourbaki - C. P. Rourke and B. J. Sanderson,
*Block bundles. I*, Ann. of Math. (2)**87**(1968), 1–28. MR**226645**, DOI 10.2307/1970591 - C. P. Rourke and B. J. Sanderson,
*$\Delta$-sets. I. Homotopy theory*, Quart. J. Math. Oxford Ser. (2)**22**(1971), 321–338. MR**300281**, DOI 10.1093/qmath/22.3.321 - C. P. Rourke and B. J. Sanderson,
*$\triangle$-sets. II. Block bundles and block fibrations*, Quart. J. Math. Oxford Ser. (2)**22**(1971), 465–485. MR**300282**, DOI 10.1093/qmath/22.4.465 - Hassler Whitney,
*On the theory of sphere-bundles*, Proc. Nat. Acad. Sci. U.S.A.**26**(1940), 148–153. MR**1338**, DOI 10.1073/pnas.26.2.148

**29**(1976-77), No. 497. E. Miller, Ph.D. Thesis, Harvard Univ., Cambridge, Mass., 1973.

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**239**(1978), 391-397 - MSC: Primary 57D20; Secondary 57C05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0494134-6
- MathSciNet review: 0494134