The existence of combinatorial formulae for characteristic classes
HTML articles powered by AMS MathViewer
- by Norman Levitt and Colin Rourke PDF
- Trans. Amer. Math. Soc. 239 (1978), 391-397 Request permission
Abstract:
Given a characteristic class on a locally ordered combinatorial manifold M there exists a cocycle which represents the class on M and is locally defined, i.e. its value on $\sigma \in M$ depends only on the ordered star ${\text {st}}(\sigma ,M)$. For rational classes the dependence on order disappears. There is also a locally defined cycle which carries the dual homology class.References
- J. C. Cantrell and C. H. Edwards Jr. (eds.), Topology of manifolds, Markham Publishing Co., Chicago, Ill., 1970. MR 0268896
- Stephen Halperin and Domingo Toledo, Stiefel-Whitney homology classes, Ann. of Math. (2) 96 (1972), 511–525. MR 312515, DOI 10.2307/1970823 R. MacPherson, Sem. Bourbaki 29 (1976-77), No. 497. E. Miller, Ph.D. Thesis, Harvard Univ., Cambridge, Mass., 1973.
- C. P. Rourke and B. J. Sanderson, Block bundles. I, Ann. of Math. (2) 87 (1968), 1–28. MR 226645, DOI 10.2307/1970591
- C. P. Rourke and B. J. Sanderson, $\Delta$-sets. I. Homotopy theory, Quart. J. Math. Oxford Ser. (2) 22 (1971), 321–338. MR 300281, DOI 10.1093/qmath/22.3.321
- C. P. Rourke and B. J. Sanderson, $\triangle$-sets. II. Block bundles and block fibrations, Quart. J. Math. Oxford Ser. (2) 22 (1971), 465–485. MR 300282, DOI 10.1093/qmath/22.4.465
- Hassler Whitney, On the theory of sphere-bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148–153. MR 1338, DOI 10.1073/pnas.26.2.148
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 239 (1978), 391-397
- MSC: Primary 57D20; Secondary 57C05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0494134-6
- MathSciNet review: 0494134