## Variations, characteristic classes, and the obstruction to mapping smooth to continuous cohomology

HTML articles powered by AMS MathViewer

- by Mark A. Mostow
- Trans. Amer. Math. Soc.
**240**(1978), 163-182 - DOI: https://doi.org/10.1090/S0002-9947-1978-0474357-2
- PDF | Request permission

## Abstract:

In a recent paper, the author gave an example of a singular foliation on ${{\mathbf {R}}^2}$ for which it is impossible to map the de Rham cohomology ${T_{{\text {DR}}}}$ to the continuous singular cohomology ${T_{\text {c}}}$ (in the sense of Bott and Haefliger’s continuous cohomology of spaces with two topologies) compatibly with evaluation of cohomology classes on homology classes. In this paper the obstruction to mapping ${T_{{\text {DR}}}}$ to ${T_{\text {c}}}$ is pinpointed by defining a whole family of cohomology theories ${T_{k,m,n}}$, based on cochains which vary in a ${C^k}$ manner, which mediate between the two. It is shown that the obstruction vanishes on nonsingularly foliated manifolds. The cohomology theories are extended to Haefliger’s classifying space $(B{\Gamma _q} \to B{J_q})$, with its germ and jet topologies, by using a notion of differentiable space similar to those of J. W. Smith and K. T. Chen. The author proposes that certain of the ${T_{kmn}}$ be used instead of ${T_{\text {c}}}$ to study Bott and Haefliger’s conjecture that the continuous cohomology of $(B{\Gamma _q} \to B{J_q})$ equals the relative Gel’fand-Fuks cohomology ${H^\ast }({\mathfrak {a}_q},{O_q})$. It is shown that ${T_{kmn}}(B{\Gamma _q} \to B{J_q})$ may contain new characteristic classes for foliations which vary only in a ${C^k}$ manner when a foliation is varied smoothly.## References

- Raoul Bott,
*Lectures on characteristic classes and foliations*, Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971) Lecture Notes in Math., Vol. 279, Springer, Berlin, 1972, pp. 1–94. Notes by Lawrence Conlon, with two appendices by J. Stasheff. MR**0362335** - Raoul Bott,
*Some remarks on continuous cohomology*, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 161–170. MR**0368027** - R. Bott, H. Shulman, and J. Stasheff,
*On the de Rham theory of certain classifying spaces*, Advances in Math.**20**(1976), no. 1, 43–56. MR**402769**, DOI 10.1016/0001-8708(76)90169-9 - Glen E. Bredon,
*Sheaf theory*, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR**0221500** - Jean-Philippe Buffet and Jean-Claude Lor,
*Une construction d’un universal pour une classe assez large de $\Gamma$-structures*, C. R. Acad. Sci. Paris Sér. A-B**270**(1970), A640–A642 (French). MR**271942** - Kuo-tsai Chen,
*Iterated integrals of differential forms and loop space homology*, Ann. of Math. (2)**97**(1973), 217–246. MR**380859**, DOI 10.2307/1970846 - Johan L. Dupont,
*Simplicial de Rham cohomology and characteristic classes of flat bundles*, Topology**15**(1976), no. 3, 233–245. MR**413122**, DOI 10.1016/0040-9383(76)90038-0 - Samuel Eilenberg,
*Singular homology in differentiable manifolds*, Ann. of Math. (2)**48**(1947), 670–681. MR**21314**, DOI 10.2307/1969134 - Marvin J. Greenberg,
*Lectures on algebraic topology*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0215295** - André Haefliger,
*Homotopy and integrability*, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 133–163. MR**0285027** - James L. Heitsch,
*Deformations of secondary characteristic classes*, Topology**12**(1973), 381–388. MR**321106**, DOI 10.1016/0040-9383(73)90030-X - Sze-tsen Hu,
*On singular homology in differentiable spaces*, Ann. of Math. (2)**50**(1949), 266–269. MR**30198**, DOI 10.2307/1969451 - Franz W. Kamber and Philippe Tondeur,
*Characteristic invariants of foliated bundles*, Manuscripta Math.**11**(1974), 51–89. MR**334237**, DOI 10.1007/BF01189091 - John Milnor,
*Construction of universal bundles. II*, Ann. of Math. (2)**63**(1956), 430–436. MR**77932**, DOI 10.2307/1970012 - G. D. Mostow,
*Cohomology of topological groups and solvmanifolds*, Ann. of Math. (2)**73**(1961), 20–48. MR**125179**, DOI 10.2307/1970281 - Mark Alan Mostow,
*Continuous cohomology of spaces with two topologies*, Mem. Amer. Math. Soc.**7**(1976), no. 175, x+142. MR**413132**, DOI 10.1090/memo/0175
—, - Graeme Segal,
*Classifying spaces and spectral sequences*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 105–112. MR**232393**, DOI 10.1007/BF02684591 - Herbert Shulman,
*The double complex of $\Gamma _{k}$*, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 313–314. MR**0375308**
H. Shulman and J. Stasheff, - J. Wolfgang Smith,
*The de Rham theorem for general spaces*, Tohoku Math. J. (2)**18**(1966), 115–137. MR**202154**, DOI 10.2748/tmj/1178243443 - Tammo tom Dieck,
*On the homotopy type of classifying spaces*, Manuscripta Math.**11**(1974), 41–49. MR**350730**, DOI 10.1007/BF01189090 - Izu Vaisman,
*Cohomology and differential forms*, Pure and Applied Mathematics, vol. 21, Marcel Dekker, Inc., New York, 1973. Translation editor: Samuel I. Goldberg. MR**0341344** - W. T. van Est,
*Group cohomology and Lie algebra cohomology in Lie groups. I, II*, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math.**15**(1953), 484–492, 493–504. MR**0059285**, DOI 10.1016/S1385-7258(53)50061-7 - Frank W. Warner,
*Foundations of differentiable manifolds and Lie groups*, Scott, Foresman & Co., Glenview, Ill.-London, 1971. MR**0295244**

*Differential geometry on Milnor classifying spaces and geometric realizations*, J. Differential Geometry (to appear).

*De Rham theory for*$B\Gamma$, Proc. Conf. on Foliations, Rio de Janeiro, January 1976.

## Bibliographic Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**240**(1978), 163-182 - MSC: Primary 57F30; Secondary 57D30
- DOI: https://doi.org/10.1090/S0002-9947-1978-0474357-2
- MathSciNet review: 0474357